• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

‘You say tomato, I say genomics’: Genome sequences for two wild tomato ancestors

Bioengineer by Bioengineer
January 27, 2021
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Tsukuba research team produces genome sequences for two wild ancestors of tomato, opening the way for using novel genes to breed better tomatoes

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Tomatoes are one of the most popular types of fresh produce consumed worldwide, as well as being an important ingredient in many manufactured foods.

As with other cultivated crops, some potentially useful genes that were present in its South American ancestors were lost during domestication and breeding of the modern tomato, Solanum lycopersicum var. lycopersicum.

Because of its importance as a crop, the tomato genome sequence was completed and published as long ago as 2012, with later additions and improvements. Now, the team at University of Tsukuba, in collaboration with TOKITA Seed Co. Ltd, have produced high-quality genome sequences of two wild ancestors of tomato from Peru, Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme. They recently published the work in DNA Research.

The team used modern DNA sequencing technologies, which can read longer sequences than was previously possible, coupled with advanced bioinformatics tools to analyze the hundreds of gigabytes of data generated and to confirm the high quality of the data. They assembled the many sequence fragments, showed where sequences matched the known genes in the 12 chromosomes found in cultivated tomatoes, and also identified thousands of sequences of new genes that are not found in modern types. Many of these novel DNA sequences are present in only one or other of the ancestral species.

The researchers went on to analyze the transcriptome in the two ancestral tomatoes–those genes where the DNA is transcribed into RNA messages, which supply the instructions for the cell to make proteins–examining 17 different parts of the plants to show which genes were active. Together with comparisons with known genes, this information points to possible functions of the novel genes, for example in fruit development, or conferring disease resistance in the leaves, or salt tolerance in the roots.

“The new genome sequences for these ancestral tomatoes will be valuable for studying the evolution of this group of species and how the genetics changed during domestication”, says corresponding author Professor Tohru Ariizumi. “In addition, the wild relatives contain thousands of genes not found in modern cultivated tomatoes. With this new information, researchers will be able to locate novel and useful genes that can be bred into tomatoes, and potentially other crops too. This will help plant breeders develop improved future types of tomato with features like better resistance to diseases, increased tolerance for the changing climate, and improved taste and shelf-life.”

###

The article, “De novo genome assembly of two tomato ancestors, Solanum pimpinellifolium and S. lycopersicum var. cerasiforme, by long-read sequencing”, was published in DNA Research at doi.org/10.1093/dnares/dsaa029

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/dnares/dsaa029

Tags: BioinformaticsBiologyEvolutionGenesMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Stable 4.8V Cathodes via Supersaturated High-Valence Design

August 6, 2025
blank

Hypoxia Improves Neurodegeneration, Movement in Parkinson’s Mice

August 6, 2025

Forensic Age Estimation in Southwestern Chinese Adolescents

August 6, 2025

Pasteurella multocida Cap B: Virulence and Cross Protection

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stable 4.8V Cathodes via Supersaturated High-Valence Design

Hypoxia Improves Neurodegeneration, Movement in Parkinson’s Mice

Forensic Age Estimation in Southwestern Chinese Adolescents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.