• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Wyss Institute launches human Organ Chip project to model influenza virus infection

Bioengineer by Bioengineer
September 13, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(BOSTON) — The Wyss Institute for Biologically Inspired Engineering has received funding from the National Institutes of Health (NIH) to leverage its human Organ-on-a-Chip (Organ Chip) microfluidic cell culture technology to develop clinically relevant in vitro models of influenza infection of human lung, and to identify new anti-viral therapeutics that act by modulating the host response to infection.

The multi-disciplinary project led by Principal Investigator (PI) and Wyss Founding Director, Donald Ingber, M.D., Ph.D., will be one of several projects within the "Tissue Chip for Disease Modeling and Efficacy Testing" initiative funded by NIH's National Center for Advancing Translational Sciences (NCATS) in an effort to explore human microphysiological systems as potential facilitators of drug development in various disease areas. Recognizing that more than 60% of drugs fail in human clinical trials, the agency hopes to push development of better pre-clinical human models by awarding about $15 million annually to 13 two-year projects.

The development of anti-influenza drugs has been limited by the fact that animal models do not accurately reflect the infection mechanisms influenza viruses engage in humans. In the proposed studies, the Wyss Institute's team will use lung Small Airway and Alveolus Chip devices lined by living human lung cells that they previously showed to faithfully reproduce normal lung physiology as well as lung diseases that affect these regions, including chronic obstructive pulmonary disease (COPD), asthma and pulmonary edema.

The Lung Chips are microengineered devices the size of a computer memory stick that contain two parallel hollow channels, each less than 1 millimeter wide, separated by a porous membrane. Lung alveolar cells or airway epithelial cells are cultured on the porous membrane in one channel, and lung capillary endothelial cells are grown on the opposite side of the same membrane in the second channel to recreate the characteristic tissue-tissue interface found within these lung regions. With air streaming through the lung epithelial channels and growth medium continuously streaming through the 'vascular channels', the team can maintain, study and manipulate the re-engineered organ units over the course of weeks to months. Deforming forces also can be applied to the tissue-tissue interface of the Alveolus Chip to mimic breathing motions of the living lung.

"Virtually all existing anti-viral drugs target the virus itself, however, the ability to study influenza infection in human Lung Chips also allows us to study the host response to infection in a highly controlled way," said Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Vascular Biology Program at Boston Children's Hospital, as well as Professor of Bioengineering at Harvard's John A. Paulson School of Engineering and Applied Sciences. "We hope to leverage this new capability to develop a new class of anti-influenza drugs that effectively make the lung tissues resistant to viral infection."

By first linking the lung Airway and Alveolus Chips together, the Institute's influenza team envisions to mimic the natural course of influenza infection, where the virus mostly infects small airway cells first and then propagates further to the lung's alveoli to cause tissue break down, and edema. The Wyss Institute's influenza team also will expand the lung infection model by fluidically coupling the Lung Chips to a human Liver Chip because many drugs, including the most commonly used anti-viral drugs, are known to be chemically transformed into their active metabolites in the liver.

To enable new drug discovery, the team will access the expertise of Co-Investigator and Wyss Institute Core Faculty member James Collins, Ph.D., a world-leading expert in synthetic biology. The team will use integrated multi-omic analysis and bioinformatics approaches to assess genome-wide changes in gene expression and alterations in the synthesis of proteins and metabolites that result from infection in the different lung Organ Chips. The analysis aims to pinpoint key changes in the host response to viral infections that may be targeted to develop new anti-influenza therapeutics. Collins is also the Termeer Professor of Medical Engineering & Science and Professor of Biological Engineering at the Massachusetts Institute of Technology's Department of Biological Engineering.

###

MULTIMEDIA AVAILABLE

PRESS CONTACT

Wyss Institute for Biologically Inspired Engineering at Harvard University
Benjamin Boettner, [email protected], +1 617-432-8232

MULTIMEDIA CONTACT

Wyss Institute for Biologically Inspired Engineering at Harvard University
Seth Kroll, [email protected], +1 617-432-7758

The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité – Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

Media Contact

Benjamin Boettner
[email protected]
917-913-8051
@wyssinstitute

Home

Share12Tweet7Share2ShareShareShare1

Related Posts

New Insights into Human Cilia Shed Light on Childhood Diseases

New Insights into Human Cilia Shed Light on Childhood Diseases

October 2, 2025
Exploring Genetic Diversity and Virulence in Cupriavidus

Exploring Genetic Diversity and Virulence in Cupriavidus

October 2, 2025

Tiny Cellular Messengers in Obesity Speed Up Alzheimer’s-Related Brain Plaque Formation

October 2, 2025

Improving Ethiopian Livestock: Quality Challenges and Solutions

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    78 shares
    Share 31 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mount Sinai Study Reveals How Sex-Based Pelvic Differences Impact Spinal Screw and Rod Placement in Surgery

Prolonged U.S. Residency Linked to Rising Heart Disease Risk Among Immigrants

Virtual Reality: A Promising Tool for Alleviating Anxiety in Patients Facing Interventional Cardiovascular Procedures

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.