• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Wound treatment gel fights the battle against antibacterial resistance

Bioengineer by Bioengineer
April 2, 2024
in Chemistry
Reading Time: 3 mins read
0
To create a new wound-care gel, researchers used a common hydrogel, Gel-MA, and created several combinations infused with platelet-rich blood plasma (PRP) and polylysine (PL). To test the gel’s ability to battle bacteria, they added E. coli and S. aureu
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, April 2, 2024 – Hydrogels are popular for use in skin ailments and tissue engineering. These polymer-based biocompatible materials are useful for their abilities to retain water, deliver drugs into wounds, and biodegrade. However, they are complicated to manufacture and not very resilient to external forces like rubbing against clothing, sheets, or wound dressings. They are also not inherently able to battle bacterial infections, so they are often infused with antimicrobial drugs or metal ions, which can cause antibiotic resistance and negative effects on cell growth.

To create a new wound-care gel, researchers used a common hydrogel, Gel-MA, and created several combinations infused with platelet-rich blood plasma (PRP) and polylysine (PL). To test the gel’s ability to battle bacteria, they added E. coli and S. aureu

Credit: Peiyu Yan

WASHINGTON, April 2, 2024 – Hydrogels are popular for use in skin ailments and tissue engineering. These polymer-based biocompatible materials are useful for their abilities to retain water, deliver drugs into wounds, and biodegrade. However, they are complicated to manufacture and not very resilient to external forces like rubbing against clothing, sheets, or wound dressings. They are also not inherently able to battle bacterial infections, so they are often infused with antimicrobial drugs or metal ions, which can cause antibiotic resistance and negative effects on cell growth.

In a paper published this week in APL Materials, by AIP Publishing, researchers created a hydrogel that is easier to synthesize, contains natural antibiotic properties, and promotes cell growth.

“A diabetic patient may have skin wounds that do not heal easily due to metabolic disease,” author Jing Sun said. “The patient may try to treat the wounds with topical medicines such as erythromycin, and it may be effective at first, but over a long period of time, it may fail to relieve symptoms. This could be due to antibiotic resistance.”

Using the common hydrogel Gel-MA, they added the amino acid polylysine and platelet-rich blood plasma to create properties that are well-suited to wound care. The result is a hydrogel that is stronger, expands in the wound, lasts longer, kills bacteria, and creates a healthy environment for new cells to grow.

“The hydrogel continuously releases polylysine on the wound surface and continuously inhibits bacterial growth,” Sun said. “We chose ε-polylysine because it can inhibit the growth of bacteria and solve the problem of antibiotic abuse, drug resistance, and does not affect the proliferation and development of cells. It can also conjugate with gelatin methacrylate, which plays an antimicrobial role and enhances the mechanical strength of the hydrogel.”

In tests with E. coli and S. aureus, the bacterium that causes staph infection, the hydrogel damaged bacteria cell membranes and led to bacterial cell death. For healthy cells, the inclusion of platelet-rich blood plasma resulted in a release of growth factors and an increase of viable cells.

“The most interesting and exciting moment for me was when we mixed the polylysine and platelet-rich plasma solutions to see if they could form a hydrogel under UV irradiation,” Sun said.

The experiment worked, and the hydrogel can be cured under a UV lamp for 30 seconds instead of curing by repeatedly freezing and thawing for up to 8 hours.

“As a clinician and researcher in dermatology, I have the obligation to provide better treatments for patients,” Sun said. “Patients with chronically infected wounds combined with metabolic diseases, such as diabetes, malnutrition, and other diseases, as well as long-term bedridden patients will be helped by this solution.”

###

The article, “Methacrylated Gelatin Hydrogel Conjugated with ε-Polylysine and Enriched with Platelet-Rich Plasma for Chronically Infected Wounds,” is authored by Peiyu Yan, Xiangru Chen, Xin He, Zhaoyang Liu, and Jing Sun.  It will appear in APL Materials on April 2, 2024 (DOI: 10.1063/5.0200159). After that date, it can be accessed at https://www.doi.org/10.1063/5.0200159.

ABOUT THE JOURNAL

APL Materials is an open access journal that features original research on significant topical issues within all areas of materials science.  See https://aip.scitation.org/journal/apm

###



Journal

APL Materials

DOI

10.1063/5.0200159

Article Title

Methacrylated Gelatin Hydrogel Conjugated with ε-Polylysine and Enriched with Platelet-Rich Plasma for Chronically Infected Wounds

Article Publication Date

2-Apr-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough Low-Cost, High-Efficiency Single-Photon Source Paves the Way for the Quantum Internet

October 16, 2025
Revolutionizing Communication: The Quantum Radio Antenna Unveiled

Revolutionizing Communication: The Quantum Radio Antenna Unveiled

October 16, 2025

Golden breakthrough: revolutionizing green chemistry with precious metals

October 16, 2025

Chromsolutions Ltd Enhances Untargeted Compound Analysis for Customers Using Wiley’s KnowItAll Software

October 15, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1251 shares
    Share 500 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Motor Skills Gap: ADHD in Kids vs. Teens

Chromatin Remodeling Suppresses Prostate Cancer Oncogenes

Revamping Atomic Transport Simulation with Flow Matching

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.