• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

World’s first demonstration that forests trap airborne microplastics

Bioengineer by Bioengineer
March 27, 2024
in Chemistry
Reading Time: 4 mins read
0
Dynamics of AMPs in the forest
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research group led by Japan Women’s University finds that airborne microplastics adsorb to the epicuticular wax on the surface of forest canopy leaves, and that forests may act as terrestrial sinks for airborne microplastics

Dynamics of AMPs in the forest

Credit: None in particular

A research group led by Japan Women’s University finds that airborne microplastics adsorb to the epicuticular wax on the surface of forest canopy leaves, and that forests may act as terrestrial sinks for airborne microplastics

Tokyo, Japan – Think of microplastics, and you might think of the ones accumulating in the world’s oceans. However, they are also filling the sky and the air we breathe. Now, it has been discovered that forests might be acting as a sink for these airborne microplastics, offering humanity yet another crucial service.

 

In a recently published study, a multi-institutional research group led by Professor Miyazaki Akane of Japan Women’s University has used a new technique to measure the levels of microplastics adhering to the leaves of trees, revealing that forests are potentially acting as terrestrial sinks for these particles.

Microplastics have come into public focus within the last decade because of their effects on the environment and human health. Airborne microplastics are tiny plastic particulates(less than 100 µm) that become suspended in the atmosphere and dispersed throughout the environment, but it has been unclear where they end up. Forests have been known to accumulate airborne pollutants, but their ability to capture airborne microplastics has been poorly understood.

“We investigated airborne microplastics on konara oak tree leaves in a small forest in Tokyo,” says lead author of the study, Natsu Sunaga. “We wanted to determine a reliable method for analyzing levels of these microplastics on leaf surfaces, and how exactly airborne microplastics become trapped by leaves.”

The team examined the leaves of Quercus serrata, a species of oak representative of Japanese forests. To extract the plastics, the leaves were treated using three processes: washing with ultrapure water, simultaneous treatment with ultrasonic waves and washing with ultrapure water, and treatment with an alkaline solution of 10% potassium hydroxide.

“We found that airborne microplastics strongly adsorb to the epicuticular wax on the leaf surface,” explains Akane Miyazaki, senior author. “In other words, these particles accumulate when they stick to the waxy surface coating of leaves.”

The team discovered that the first two treatments – rinsing with ultrapure water alone or in combination with ultrasonic waves – were insufficient for accurately determining the levels of airborne microplastics on forest canopy leaves. Treatment with alkaline potassium hydroxide, however, removed both the epicuticular wax and the substances adhered to it, proving to be an effective method for detecting airborne microplastics stuck to leaf surfaces. Crucially, previous studies that used only the first two methods may have underestimated the number of plastics adhering to leaf surfaces.

“Based on our findings, we estimate that the Quercus serrata forests of Japan (~32,500 km2) trap approximately 420 trillion airborne microplastics per year in their canopies,” states Sunaga. “This indicates that forests may act as terrestrial sinks for airborne microplastics.”

How the accumulation of these microplastics will affect forest ecosystems, including ecosystem functions and soil health, is unknown, and this will undoubtedly be an area of further research. For now, we know that forests and even roadside canopies might reduce the amount of plastic entering our lungs, and for that we have yet another reason to thank trees.

###

Reference
Title of original paper : “Alkaline extraction yields a higher number of microplastics in forest canopy leaves: implication for microplastic storage”
DOI : 10.1007/s10311-024-01725-3
Journal : Environmental Chemistry Letters
Article Publication Date : 20 March 2024
Authors :  Natsu Sunaga a, Hiroshi Okochi b, Yasuhiro Niida c, Akane Miyazaki a,*
a Graduate School of Chemical and Biological Sciences, Japan Women’s University
b Graduate School of Creative Science and Engineering, Waseda University
c PerkinElmer Japan G.K.
*Corresponding author. Akane Miyazaki
 


About Japan Women’s University

Japan Women’s University was founded as Japan’s first organized institution of higher education for women, and celebrates its 120th anniversary in 2021. It is the only private women’s university with a Faculty of science, and is a women’s comprehensive university with an educational environment that integrates the humanities and sciences. The Faculty of Transcultural Studies opened last year, and new faculties are scheduled to open in 2024 (Faculty of Architecture and Design) and 2025 (Faculty of Food Science (tentative name, under planning)). Under the tagline of “I move, and the world opens up,” we are fostering human resources who can learn and act on their own initiative and create new value. For more information, please visit https://www.jwu.ac.jp.



Journal

Environmental Chemistry Letters

DOI

10.1007/s10311-024-01725-3

Subject of Research

Not applicable

Article Title

“Alkaline extraction yields a higher number of microplastics in forest canopy leaves: implication for microplastic storage”

Article Publication Date

20-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
AI Advances Enhance Sustainable Recycling of Livestock Waste

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025

Crafting Yogurt Using Ants: A Scientific Innovation

October 3, 2025

Pd-Catalyzed Synthesis of E/Z Trisubstituted Cycloalkenes

October 3, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

Self-Efficacy Modulates Nurses’ Response to Abusive Supervision

SNARE Neofunctionalization Driven by Vacuole Retrieval

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.