• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

World’s fastest creature may also be one of the smallest

Bioengineer by Bioengineer
August 8, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Rob Felt, Georgia Tech

Ask most people to identify the fastest animal on Earth and they'll suggest a cheetah, falcon or even a sailfish. To that list of speedy animals, Georgia Institute of Technology assistant professor Saad Bhamla would like to add the Spirostomum ambiguum, a tiny single-celled protozoan that achieves blazing-fast acceleration while contracting its worm-like body.

Common to many lakes and ponds, the Spirostomum ordinarily moves about using tiny hairs called cilia. But its claim to speed involves extremely rapid acceleration while contracting its body when startled. The creature can shorten its body by more than 60 percent in a few milliseconds, going from a four-millimeter flat ribbon to the shape of an American football – all without the kind of muscles humans use.

How it does that, and how it does that without damaging fragile internal structures, is part of a four-year National Science Foundation (NSF) grant Bhamla just received. The physics and mathematics of the answers could help advance nanotechnology and accelerate a new generation of robots barely large enough to see with the naked eye.

"As engineers, we like to look at how nature has handled important challenges," said Bhamla, who is an assistant professor in Georgia Tech's School of Chemical and Biomolecular Engineering. "We are always thinking about how to make these tiny things that we see zipping around in nature. If we can understand how they work, maybe the information can cross over to fill the gap for small robots that can move fast with little energy use."

Human muscles rely on the activity of actin and myosin proteins, but tiny creatures like this protozoan owe their motion to supramolecular springs, latches and motors that more often are found in the mechanical world.

"If they had only the actin and myosin proteins that make up our muscles, they couldn't generate enough force to actually move that fast," Bhamla added. "The smaller they are, the faster they go – up to 200 meters per second squared. That's really off the charts."

Bhamla holds a Ph.D. in chemical engineering from Stanford University, where he was part of a research team studying the world of very small animals. The single-celled creatures he and his collaborators found in ponds and lakes challenged his expectations for what it means to be unicellular.

"My early biology training suggested that cells were just simple bags of fluid that didn't do much but make up more interesting tissues," said Bhamla. "The Spirostomum is completely different from the cells we are accustomed to."

As part of the NSF's joint molecular cell biology (MCB) and Physics of Living Systems (POLS) program, Bhamla and his students are using the language of mathematics and physics to describe the activities of Spirostomum.

"For instance, we want to know what is the fundamental limit for acceleration in a living cell," he said. "We want to map out everything this creature is doing and model it in the computer, taking an engineering approach. We want to learn how a single cell achieves such remarkable acceleration and uses molecular springs to amplify its power output."

What the researchers learn could be useful to future generations of tiny robots that won't be able to utilize the technologies for propulsion and grasping common to much larger machines. Beyond the simple mechanical challenges of making very small robots, engineers will have to confront energy density limitations – which the Spirostomum seems to have overcome.

Robots this small would also be rather fragile, but what the researchers have observed by peering at protozoans is just the opposite.

"It has internal organelles, DNA and delicate cytoskeletal components inside," Bhamla noted. "We want to understand how they are not damaged by the rapid compression, because the internal pressures must increase rapidly. This may advance our understanding of how truly robust biological materials are under extreme stresses and pressures. "

Protozoans like Spirostomum are found everywhere in bodies of water, and part of the NSF award will fund sharing that tiny world with K-12 students. Already, Bhamla has established a collaboration with Janet Standeven, a science teacher at the Lambert High School in Forsyth County, north of Atlanta. Five high school students are working this summer in a Georgia Tech lab to learn more about the world of tiny organisms.

"To find these curious and crazy cells, you don't need to go far," said Bhamla. "We just go to a pond, collect samples and look them under a microscope. The sky is the limit on how far you can push this, and high school students are capable of a lot given the right mentorship."

###

This research is supported by the National Science Foundation under award number 1817334. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Media Contact

John Toon
[email protected]
404-894-6986
@GeorgiaTech

http://www.gatech.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ALDH2: Key Role in Autophagy and Cell Death

Human Auditory Cortex Integrates Sounds Based on Absolute Time

Miniaturized Chaos-Enhanced Spectrometer Revolutionizes Sensing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.