• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

World first study into global daily air pollution shows almost nowhere on Earth is safe

Bioengineer by Bioengineer
March 7, 2023
in Health
Reading Time: 4 mins read
0
Professor Yuming Guo
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a world first study of daily ambient fine particulate matter (PM2.5) across the globe, a Monash University study has found that only 0.18% of the global land area and 0.001% of the global population are exposed to levels of PM2.5 – the world’s leading environmental health risk factor – below levels of safety recommended by Word Health Organization (WHO). Importantly while daily levels have reduced in Europe and North America in the two decades to 2019, levels have increased Southern Asia, Australia, New Zealand, Latin America and the Caribbean, with more than 70% of days globally seeing levels above what is safe.

Professor Yuming Guo

Credit: Monash University

In a world first study of daily ambient fine particulate matter (PM2.5) across the globe, a Monash University study has found that only 0.18% of the global land area and 0.001% of the global population are exposed to levels of PM2.5 – the world’s leading environmental health risk factor – below levels of safety recommended by Word Health Organization (WHO). Importantly while daily levels have reduced in Europe and North America in the two decades to 2019, levels have increased Southern Asia, Australia, New Zealand, Latin America and the Caribbean, with more than 70% of days globally seeing levels above what is safe.

A lack of pollution monitoring stations globally for air pollution, has meant a lack of data on local, national, regional and global PM2.5 exposure. Now this study, led by Professor Yuming Guo, from the Monash University School of Public Health and Preventive Medicine in Melbourne, Australia, and published in the prestigious journal, Lancet Planetary Health, has provided a map of how PM2.5 has changed across the globe in the past decades

The research team utilised traditional air quality monitoring observations, satellite-based meteorological and air pollution detectors, statistical and machine learning methods to more accurately assess PM2.5 concentrations globally, according to Professor Guo. “In this study, we used an innovative machine learning approach to integrate multiple meteorological and geological information to estimate the global surface-level daily PM2.5 concentrations at a high spatial resolution of approximately 10km ×10km for global grid cells in 2000-2019, focusing on areas above 15 μg/m³ which is considered the safe limit by WHO (The threshold is still arguable),” he said.

The study reveals that annual PM2.5 concentration and high PM2.5 exposed days in Europe and northern America decreased over the two decades of the study – whereas exposures increased in southern Asia, Australia and New Zealand, and Latin America and the Caribbean.

In addition, the study found that:

  • Despite a slight decrease in high PM2.5 exposed days globally, by 2019 more than 70% of days still had PM2.5 concentrations higher than 15 μg/m³.
  • In southern Asia and eastern Asia, more than 90% of days had daily PM2.5 concentrations higher than 15 μg/m³.
  • Australia and New Zealand had a marked increase in the number of days with high PM2.5 concentrations in 2019.
  • Globally, the annual average PM2.5 from 2000 to 2019 was 32.8 µg/m3.
  •  The highest PM2.5 concentrations were distributed in the regions of Eastern Asia (50.0 µg/m3) and Southern Asia (37.2 µg/m3), followed by northern Africa (30.1 µg/m3).
  • Australia and New Zealand (8.5 μg/m³), other regions in Oceania (12.6 μg/m³), and southern America (15.6 μg/m³) had the lowest annual PM2.5 concentrations.
  • Based on the new 2021 WHO guideline limit, only 0.18% of the global land area and 0.001% of the global population were exposed to an annual exposure lower than this guideline limit (annual average of 5 μg/m³) in 2019.

According to Professor Guo, the unsafe PM2.5 concentrations also show different seasonal patterns “included Northeast China and North India during their winter months (December, January, and February), whereas eastern areas in northern America had high PM2.5 in its summer months (June, July, and August),” he said.

“We also recorded relatively high PM2.5 air pollution in August and September in South America and from June to September in sub-Saharan Africa.”

He added that the study is important because “It provides a deep understanding of the current state of outdoor air pollution and its impacts on human health. With this information, policymakers, public health officials, and researchers can better assess the short-term and long-term health effects of air pollution and develop air pollution mitigation strategies.”

 

 

 



Journal

The Lancet Planetary Health

DOI

10.1016/S2542-5196(23)00008-6

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

Global estimates of daily ambient fine particulate matter concentrations and unequal spatiotemporal distribution of population exposure: a machine learning modelling study

Article Publication Date

6-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Framework Enhances Planning in Surgical Quality Improvement Projects

October 16, 2025

Innovative Framework Enhances Planning in Surgical Quality Improvement Projects

October 16, 2025

How a Program Shielded a Brazilian City Amid a Global Dengue Epidemic

October 16, 2025

U Ottawa-Led International Team Uncovers Key Breakthrough in Nerve-to-Muscle Communication

October 16, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1253 shares
    Share 500 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Framework Enhances Planning in Surgical Quality Improvement Projects

Innovative Framework Enhances Planning in Surgical Quality Improvement Projects

Brain Flight Simulator Unveils Insights into Learning and the Causes of Cognitive Drift

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.