• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biochemistry

Within a hair’s breadth–forensic identification of single dyed hair strand now possible

Bioengineer by Bioengineer
December 9, 2020
in Biochemistry, Bioinformatics, Biology, Chemistry/Physics/Materials Sciences, Genetics, Law Enforcement/Jurisprudence, Science/Health/Law, Technology/Engineering/Computer Science, Violence/Criminals
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists develop modern analytical techniques as a tool for advancing forensic investigations

IMAGE

Credit: Shinsuke Kunimura from Tokyo University of Science

In crime scene investigations, a single strand of hair can make a huge difference in the evolution of a case or trial. In most cases, forensic scientists must look for clues hidden in minuscule amounts of substances or materials found at crime scenes. If a fallen strand of hair with root cells attached is found, a DNA test can reveal the identity of a criminal; unfortunately, this seldom happens. Even though other types of DNA analysis can be conducted using the “mitochondrial DNA” embedded in the hair shaft itself, such tests are not sufficient to reliably identify a person and usually call for additional evidence.

But what if a bit of fashion consciousness could inspire a new forensic technique? In a recent study published in Analytical Sciences, scientists at the Tokyo University of Science, Japan, developed a strategy for identifying criminals from a single strand of hair, leveraging the fact that hair dyes are becoming increasingly common. Their approach involves finding out if two individual strands of hair belong to the same person based on the composition of hair dye products found on them. To do this, they employed two well-known analytical methods: surface-enhanced Raman spectroscopy (SERS) and X-ray fluorescence (XRF) analysis.

Raman spectroscopy is an analytical technique based on the physical phenomenon of Raman scattering, which models certain energetic interactions that occur when photons collide with matter. SERS is a special type of Raman spectroscopy that provides a “structural fingerprint” of a material even when very few molecules are present in the target sample. On the other hand, XRF analysis involves irradiating a material with X-rays and examining the energies of photons re-emitted when the electrons in the sample leave the excited states. XRF analysis is especially useful to determine which metallic elements are present in a material.

The scientists conducted SERS and XRF analyses using portable devices to see if they could distinguish between single strands of hog hairs dyed with different products. Associate Professor Shinsuke Kunimura, who led the study, explains why both analytical methods had to be used in combination, “SERS can easily detect the overall differences in composition between different types of hair dyes, such as permanent, semi-permanent, or natural dyes. However, it is not enough to distinguish between hair coloring products that contain or produce similar dyes. To do this, we also relied on XRF analysis, which can detect the presence of metallic elements used in the ingredients of hair dye products.” Using both techniques, the scientists were able to easily distinguish between five different dyes applied to individual strands of hog hair.

Because both analytical methods used are almost non-destructive, the strategy proposed in this study could be used to quickly analyze hairs found in crime scenes on-site before they are sent for DNA analysis. “Our approach provides supportive information for more reliably identifying whose hair was found in a crime scene,” remarks first author Momona Horiguchi. “This could help us clarify if someone is a criminal, meaning that our methodology could greatly contribute to forensic investigations.”

Overall, this study showcases how analytical tools normally used in chemistry and materials science can be creatively adapted to vastly different fields, such as forensic investigations. Hopefully, in the future, it will prevent criminals from escaping by a hair’s breadth!

###

About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan’s development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society”, TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today’s most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

About Associate Professor Shinsuke Kunimura from Tokyo University of Science

Dr. Shinsuke Kunimura graduated in 2004 from the Faculty of Engineering at Kyoto University, Japan, where he also got a PhD in Materials Science and Engineering in 2009. He specializes in X-ray spectrometry and analytical chemistry. He has published over 30 peer-reviewed papers and received awards from The Japan Society for Analytical Chemistry and the Discussion Group of X-ray Analysis.

Media Contact
Tsutomu Shimizu
[email protected]

Original Source

https://www.tus.ac.jp/en/mediarelations/archive/20201209_1011.html

Related Journal Article

http://dx.doi.org/10.2116/analsci.20P144

https://scienmag.com/within-a-hairs-breadth-forensic-identification-of-single-dyed-hair-strand-now-possible/

Share13Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    62 shares
    Share 25 Tweet 16
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.