• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

With VECSELs towards the quantum internet

Bioengineer by Bioengineer
April 5, 2024
in Chemistry
Reading Time: 4 mins read
0
VECSEL setup for quantum frequency conversion
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The expansion of fiber optics is progressing worldwide, which not only increases the bandwidth of conventional Internet connections, but also brings closer the realization of a global quantum Internet. The quantum internet can help to fully exploit the potential of certain technologies. These include much more powerful quantum computing through the linking of quantum processors and registers, more secure communication through quantum key distribution or more precise time measurements through the synchronization of atomic clocks.

VECSEL setup for quantum frequency conversion

Credit: © Fraunhofer IAF

The expansion of fiber optics is progressing worldwide, which not only increases the bandwidth of conventional Internet connections, but also brings closer the realization of a global quantum Internet. The quantum internet can help to fully exploit the potential of certain technologies. These include much more powerful quantum computing through the linking of quantum processors and registers, more secure communication through quantum key distribution or more precise time measurements through the synchronization of atomic clocks.

However, the differences between the glass fiber standard of 1550 nm and the system wavelengths of the various quantum bits (qubits) realized to date represent a hurdle, because those qubits are mostly in the visible or near-infrared spectral range. Researchers want to overcome this obstacle with the help of quantum frequency conversion, which can specifically change the frequencies of photons while retaining all other quantum properties. This enables conversion to the 1550 nm telecom range for low-loss, long-range transmission of quantum states.

Project HiFi: Enabling technologies for quantum frequency conversion

In the joint project “HiFi — Highly integrated quantum frequency converter of highest fidelity based on innovative laser, fiber and production technology” funded by the German Federal Ministry of Education and Research (BMBF), researchers are working on the realization of all necessary technologies to provide quantum frequency converters (QFK) with high efficiency and low noise for initial test tracks. The Fraunhofer Institute for Applied Solid State Physics IAF has contributed to the project with the successful development of disk lasers (also known as vertical-external-cavity surface-emitting lasers, VECSELs) based on gallium antimonide (GaSb). These are optically pumped, surface-emitting semiconductor lasers with an external resonator and intracavity filter for wavelength selection.

2.4 W output power with absolute frequency stability below 100 kHz

“The VECSELs we developed as part of HiFi are spectrally narrow-band pump sources which, depending on the output wavelength of the qubits used, specifically cover a wavelength between 1.9 and 2.5 µm and achieve an output power of up to 2.4 W with an absolute wavelength stability of less than 2 fm. This corresponds to a frequency stability of less than 100 kHz and clearly falls below the frequency stability class 1E-9. The result represents an international record for this type of laser,” explains Dr. Marcel Rattunde, HiFi sub-project coordinator and head of the optoelectronics department at Fraunhofer IAF.

“The result was made possible by the close cooperation with project partner MENLO Systems GmbH. Together, we locked the disk laser to a frequency comb, which in turn was coupled to a 10 MHz reference,” emphasizes Rattunde.

In their experiments, the researchers set the emission wavelength exactly to the target wavelength for demonstration experiments at the fiber link of Saarland University (2062.40 nm), to which Fraunhofer IAF has handed over the laser module. In addition to power scaling, the most important research tasks of Fraunhofer IAF in the HiFi project are the precise understanding of the mode behavior of the lasers and the identification and elimination of noise sources.

Quantum frequency conversion using pump lasers

In quantum frequency conversion, the energy of the pump photon is subtracted from the signal photon by a difference frequency process in a non-linear optical crystal. To ensure a low-noise process, the energy of the pump photons must be below the target wavelength (usually 1550 nm), otherwise the pump laser can generate photons in the output signal due to parasitic effects.

In combination with the MENLO frequency comb, the VECSELs developed at Fraunhofer IAF meet the high requirements of quantum frequency conversion, as their narrow bandwidth and wavelength stability prevent fluctuations in the pump wavelength and consequently changes in the target wavelength of the qubits. If there is a deviation above the natural linewidth, the qubits would no longer be indistinguishable, which would eliminate a basic requirement for subsequent quantum mechanical processing.

Fraunhofer IAF at Photonics Europe 2024

From April 7 to 11, 2024, Fraunhofer IAF researchers will present their latest research results in the field of optoelectronics at this year’s SPIE Photonics Europe in Strasbourg.

Steffen Adler will talk about the HiFi project results on April 11 at 2 pm in his presentation “High-power 2 μm GaSb-based VECSEL with an absolute wavelength stability below 1 MHz”.

All presentations at a glance:

  • Marko Härtelt: “Multiplexed dual-core QCL-based sensor for real-time standoff-spectroscopy in crime scene investigations” (April 8, 4:30 p.m., Schuman, Level 1)
  • Thorsten Passow: “Optimization of AlGaAs-based Bragg-reflection waveguides for entangled photon sources” (9 April, 18:10, Galerie Schweitzer, Level 0)
  • Peter Holl: “Light Source based on Adiabatic Frequency Conversion in Whispering Gallery Resonators tailored for holographic metrology” (April 10, 10:00 a.m., Rome, Level 0)
  • Steffen Adler: “High-power 2 μm GaSb-based VECSEL with an absolute wavelength stability below 1 MHz” (April 11, 14:00, Dresde/Salon 13, Level 1)

Further information

Program of SPIE Photonics Europe 2024: https://spie.org/conferences-and-exhibitions/photonics-europe/programme/browse-programme#_=_

Optoelectronics at Fraunhofer IAF: https://www.iaf.fraunhofer.de/en/researchers/optoelectronic-devices.html

HiFi project profile: https://www.iaf.fraunhofer.de/en/researchers/optoelectronic-devices/Hifi.html

About Fraunhofer IAF

The Fraunhofer Institute for Applied Solid State Physics IAF is one of the world’s leading research institutions in the fields of III-V semiconductors and synthetic diamond. Based on these materials, Fraunhofer IAF develops components for future-oriented technologies, such as electronic circuits for innovative communication and mobility solutions, laser systems for real-time spectroscopy, novel hardware components for quantum computing as well as quantum sensors for industrial applications. With its research and development, the Freiburg research institute covers the entire value chain — from materials research, design and processing to modules, systems and demonstrators. www.iaf.fraunhofer.de/en



Share12Tweet8Share2ShareShareShare2

Related Posts

Mapping Proteome-wide Selectivity of Diverse Electrophiles

Mapping Proteome-wide Selectivity of Diverse Electrophiles

October 30, 2025
blank

Tufts Physicists Shed Light on the Origins of Matter

October 30, 2025

Observing a Black Hole Flicker Across Time

October 30, 2025

When Electrons Harmonize and Perceive Their Surroundings

October 30, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ECM, ROCK, and Polarity Orchestrate Lung Growth

Cluster Analysis Links Body Composition, Child Health Risks

Moffitt Research Reveals Complementary Approaches to Combat Resistance to KRAS G12C Inhibitors in Lung Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.