• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Wireless handheld spectrometer transmits data to smartphone

Bioengineer.org by Bioengineer.org
January 26, 2018
in Headlines, Health, Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dan Wang, Beijing University of Chemical Technology

WASHINGTON — Spectral images, which contain more color information than is obtainable with a typical camera, reveal characteristics of tissue and other biological samples that can't be seen by the naked eye. A new smartphone-compatible device that is held like a pencil could make it practical to acquire spectral images of everyday objects and may eventually be used for point-of-care medical diagnosis in remote locations.

Potential applications of the new device include detecting oxygen saturation in a person's blood, determining the freshness of meat in the grocery store and identifying fruit that is the perfect ripeness. The spectrometer could also make it easier to acquire spectral data in the field for scientific studies.

In The Optical Society (OSA) journal Biomedical Optics Express, the researchers describe how to make the new pencil-like spectrometer and demonstrate its ability to acquire spectral images of bananas, pork and a person's hand. The new device can detect wavelengths from 400 to 676 nanometers at 186 spots simultaneously.

"The easiest way to use a spectrometer is to wave it over the part of the body or object being examined," said first author Fuhong Cai, Hainan University, China. "However, many home-made portable spectrometers use a smartphone camera to acquire data and a phone cradle that contains other necessary optics. The cradle can be hard to align correctly and makes it awkward to wave the smartphone over the body."

Rather than using a smartphone camera to acquire images, the new spectrometer uses a commercially available complementary metal-oxide-semiconductor (CMOS) camera that wirelessly transmits images to a smartphone. This approach allowed the researchers to assemble a cylindrical spectral imaging device weighing just 140 grams (about 5 ounces) that is about the length of smartphone and just over 3 centimeters in diameter.

Using off-the-shelf components

The new pencil-like spectrometer uses all commercially-available components that can be purchased for less than $300 (US). The light source is an array of white LEDs, which connects to an off-the-shelf optical lens tube with the CMOS detector and other optical components necessary for spectral imaging.

One can use the pencil-like spectrometer simply by moving it across the target area by hand. This manual push-broom scanning process builds up a series of spectral images that are sent to a smartphone or computer where software stitches the spectral images together into a 3D spectral image data cube.

The researchers tested the spectrometer by using it to detect banana ripeness and levels of myoglobin — the iron-containing protein that gives meat its color–in a piece of pork. They also used it to scan a person's hand, obtaining a 16-second video containing 200 spectral images. From the 3D spectral images, the researchers could distinguish five fingers and the palm and saw differences in hemoglobin distribution in various parts of the hand.

The researchers are also interested in using their compact imaging spectrometer for environmental monitoring. "We're developing distributed spectral cameras that could be used for a wide range of ocean surveys, such as detecting dissolved organic matter in water or pigments that indicate early signs of harmful algal blooms," said Cai. "Since the imaging spectrometer can connect to any type of camera, we are also examining the idea of attaching it to the camera of an autonomous vehicle to create a remote ocean sensing system."

Optimizing the system

Although using commercially-available components to make the prototype means that anyone can assemble the device, it also places some limits on resolution and sensitivity. For example, the prototype can only resolve wavelengths that differ by at least 17 nanometers.

"We expect significant spectral resolution improvements in the future by using an improved camera with a long focal length lens," said Dan Wang, Beijing University of Chemical Technology, China, a member of the research team. "These improvements would expand the applications for the device."

The researchers also plan to develop software to make the spectral imager even more useful. "We want to develop ways to use machine learning algorithms to analyze the massive amounts of data that could be collected with the portable spectra imager," said Sailing He, Zhejiang University, China, a member of the research team. "We also want to create software for smartphones that uses spectral imaging data to measure meat freshness, for example."

###

Paper: F. Cai, D. Wang, M. Zhu, S. He, "A pencil-like imaging spectrometer for bio-samples sensing," Biomed. Opt. Express, Volume 8, Issue 12, 5427-5436 (2017). DOI: 10.1364/BOE.8.005427.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Christoph Hitzenberger, Medical University of Vienna. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Rebecca B. Andersen
The Optical Society
[email protected]
1-202-416-1443

Joshua Miller
The Optical Society
[email protected]
1-202-416-1435

Media Contact

Joshua Miller
[email protected]
202-416-1435
@opticalsociety

http://www.osa.org

Original Source

http://www.osa.org/en-us/about_osa/newsroom/news_releases/2017/wireless_handheld_spectrometer_transmits_data_to_s/ http://dx.doi.org/10.1364/BOE.8.005427.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Affordable Materials Convert Waste Carbon into Energy-Dense Compounds

November 5, 2025

New Study Suggests Radiotherapy May Be Unnecessary After Mastectomy

November 5, 2025

Mayo Clinic Researchers Develop Innovative Stem Cell Patch for Gentle Heart Repair

November 5, 2025

Probabilistic Brain Atlas Enhances MRI Segmentation

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Affordable Materials Convert Waste Carbon into Energy-Dense Compounds

New Study Suggests Radiotherapy May Be Unnecessary After Mastectomy

Mayo Clinic Researchers Develop Innovative Stem Cell Patch for Gentle Heart Repair

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.