• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Winds of rubies and sapphires strike the sky of giant planet

Bioengineer by Bioengineer
December 12, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Warwick/Mark Garlick

  • Weather detected on HAT-P-7b – a planet 16x larger than Earth, over 1000 light years away
  • First ever gas giant outside our solar system to reveal weather patterns
  • Clouds on planet could be made of corundum, the mineral which forms rubies and sapphires
  • Kepler satellite measured changes in the light reflected from planet

Signs of powerful changing winds have been detected on a planet 16 times larger than Earth, over 1000 light years away – the first time ever that weather systems have been found on a gas giant outside our solar system – according to new research by the University of Warwick.

Dr David Armstrong in Warwick's Astrophysics Group has discovered that the gas giant HAT-P-7b is affected by large scale changes in the strong winds moving across the planet, likely leading to catastrophic storms.

This discovery was made by monitoring the light being reflected from the atmosphere of HAT-P-7b, and identifying changes in this light, showing that the brightest point of the planet shifts its position.

This shift is caused by an equatorial jet with dramatically variable wind-speeds – at their fastest, pushing vast amounts of cloud across the planet.

The clouds themselves would be visually stunning – likely made of up corundum, the mineral which forms rubies and sapphires.

The planet could never be inhabitable, due to its likely violent weather systems, and unaccommodating temperatures. One side of the planet always faces the star, because it is tidally locked, and that side remains much hotter than the other – the day side average temperature on HAT-P-7 being 2860K.

Thanks to this pioneering research, astrophysicists can now begin to explore how weather systems on other planets outside our solar system change over time.

Dr Armstrong comments on the discovery:

"Using the NASA Kepler satellite we were able to study light reflected from HAT-P-7b's atmosphere, finding that the atmosphere was changing over time. HAT-P-7b is a tidally locked planet, with the same side always facing its star. We expect clouds to form on the cold night side of the planet, but they would evaporate quickly on the hot dayside.

"These results show that strong winds circle the planet, transporting clouds from the night side to the dayside. The winds change speed dramatically, leading to huge cloud formations building up then dying away. This is the first detection of weather on a gas giant planet outside the solar system."

First discovered in 2008, HAT-P-7b is 320 parsecs (over 1040 light years) away from us. It is an exoplanet 40% larger than Jupiter and 500 times more massive than the Earth – and orbits a star 50% more massive, and twice as large, as the Sun.

###

The work was led by the University of Warwick, and performed by a team of scientists from Warwick, Queens University Belfast, Dublin City University and University College London.

The paper, 'Variability in the Atmosphere of the Hot Jupiter HAT-P-7', is published in the first issue of Nature Astronomy.

Media Contact

Luke Walton
[email protected]
44-782-454-0863
@warwicknewsroom

http://www.warwick.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Revolutionary Metamaterial Developed by Rice Researchers Could Transform Implantable and Ingestible Devices

Revolutionary Metamaterial Developed by Rice Researchers Could Transform Implantable and Ingestible Devices

September 18, 2025

Researchers Pinpoint Potential Therapeutic Targets in Pediatric Germ Cell Tumors

September 18, 2025

Nitrile Additives Enhance LiCoO2 Cathode Stability

September 18, 2025

Detecting BRAF and NRAS Mutations in Myeloma

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Metamaterial Developed by Rice Researchers Could Transform Implantable and Ingestible Devices

Researchers Pinpoint Potential Therapeutic Targets in Pediatric Germ Cell Tumors

Nitrile Additives Enhance LiCoO2 Cathode Stability

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.