• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Why the flounder is flat

Bioengineer by Bioengineer
December 5, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Flatfish are some of the most unusual vertebrate animals on our planet. They start out their life fully symmetrical, like any other fish, but undergo a spectacular metamorphosis where the symmetric larva is transformed into an asymmetric juvenile whose eyes end up on one side of the head.

As they relocate from open water to live and feed on the seabed, a second change occurs: The flounder's downward-facing side loses its skin pigment. These transformations require the flatfish do undergo radical change, both in physiology and behavior.

A mystery for Darwin already

The puzzle of how these changes could occur in the course of evolution has been intriguing scientists for a long time. Even Darwin was at a loss to explain the "remarkable peculiarity" of flatfish anatomy. An international team of researchers has now unlocked the decisive mechanisms driving the metamorphosis.

The team was led by biochemist Manfred Schartl, Head of the Department for Physiological Chemistry at the University of Würzburg's Biocenter, with his former Würzburg student and co-worker Songlin Chen from the Yellow Sea Fisheries Research Institute in China. The scientists have published their findings in the current issue of the journal Nature Genetics.

Two agents identified

"We recently sequenced the genome of both the Japanese flounder (Paralichthys olivaceus) and its distant relative, the tongue sole (Cynoglossus semilaevis)," Manfred Schartl explains. The comparison of the two genomes delivered the clue about the genetic bases of the radical physiological changes.

Focusing on the genes that were active during the metamorphosis, the scientists identified a key developmental trigger: retinoic acid. "Retinoic acid is responsible for the changes in skin pigments in flounders and interacts with a thyroid hormone that causes both eyes to migrate to one half of the body," Schartl sums up the central results of their work.

Light also plays a central role in this process as the researchers were surprised to find out during their work. They discovered that the same pigments that capture light in the eye are expressed in the skin of the flounder larvae. "They sense differences in brightness to adjust the concentration of retinoic acid," Schartl says. This in turn affects the thyroid hormone and promotes asymmetry generation.

Benefits for the fishing industry

Scientists of various research institutes in China participated in the study. They received financial support among others from the Chinese Ministry of Agriculture. In addition to scientific reasons, this has an economic background: Flounders are highly priced food fish and accordingly expensive. To meet the increasing demand, China operates huge fish farms that produce more than half of the world's farmed fish.

However, failures in metamorphosis are a frequent problem in flounder aquaculture accounting for many millions of dollars of losses in production.

Understanding how these unique creatures develop not only solves a long-standing evolutionary puzzle, it also serves the fishing industry and helps feed a continuously growing population.

###

Media Contact

Dr. Manfred Schartl
[email protected]
49-093-131-84149
@Uni_WUE

https://www.uni-wuerzburg.de/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Targeting Lipid Metabolism to Enhance Antitumor Immunity

September 19, 2025
Triple Wavefront Modulation Enables Advanced Multi-Depth XR Vision

Triple Wavefront Modulation Enables Advanced Multi-Depth XR Vision

September 19, 2025

Uncovering Gaps in Rehab for Hospitalized Patients

September 19, 2025

Collaborating on European Data Science for Seniors

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting Lipid Metabolism to Enhance Antitumor Immunity

Triple Wavefront Modulation Enables Advanced Multi-Depth XR Vision

Uncovering Gaps in Rehab for Hospitalized Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.