• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Why teapots always drip

Bioengineer by Bioengineer
November 9, 2021
in Biology
Reading Time: 3 mins read
0
Teapot
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The “teapot effect” has been threatening spotless white tablecloths for ages: if a liquid is poured out of a teapot too slowly, then the flow of liquid sometimes does not detach itself from the teapot, finding its way into the cup, but dribbles down at the outside of the teapot.

Teapot

Credit: TU Wien

The “teapot effect” has been threatening spotless white tablecloths for ages: if a liquid is poured out of a teapot too slowly, then the flow of liquid sometimes does not detach itself from the teapot, finding its way into the cup, but dribbles down at the outside of the teapot.

This phenomenon has been studied scientifically for decades – now a research team at TU Wien has succeeded in describing the “teapot effect” completely and in detail with an elaborate theoretical analysis and numerous experiments: An interplay of different forces keeps a tiny amount of liquid directly at the edge, and this is sufficient to redirect the flow of liquid under certain conditions.

An effect with a long history

The “teapot effect” was first described by Markus Reiner in 1956. Reiner earned his doctorate at TU Wien in 1913 and then emigrated to the USA, where he became an important pioneer of rheology – the science of flow behaviour. Again and again, scientists have tried to explain this effect precisely. Work on this topic was awarded the satirical “IG Nobel Prize” in 1999. Now, research on the teapot effect has come full circle, as it was studied at Reiner’s alma mater, the TU Wien, by a team around Dr. Bernhard Scheichl, lecturer at the Institute of Fluid Mechanics and Heat Transfer and Key Scientist at the Austrian Centre of Excellence for Tribology (AC2T research GmbH), in cooperation with the Department of Mathematics at the University College London.

“Although this is a very common and seemingly simple effect, it is remarkably difficult to explain it exactly within the framework of fluid mechanics,” says Bernhard Scheichl. The sharp edge on the underside of the teapot beak plays the most important role: a drop forms, the area directly below the edge always remains wet. The size of this drop depends on the speed at which the liquid flows out of the teapot. If the speed is lower than a critical threshold, this drop can direct the entire flow around the edge and dribbles down on the outside wall of the teapot.

“We have now succeeded for the first time in providing a complete theoretical explanation of why this drop forms and why the underside of the edge always remains wetted,” says Bernhard Scheichl. The mathematics behind it is complicated – it is an interplay of inertia, viscous and capillary forces. The inertial force ensures that the fluid tends to maintain its original direction, while the capillary forces slow the fluid down right at the beak. The interaction of these forces is the basis of the teapot effect. However, the capillary forces ensure that the effect only starts at a very specific contact angle between the wall and the liquid surface. The smaller this angle is or the more hydrophilic (i.e. wettable) the material of the teapot is, the more the detachment of the liquid from the teapot is slowed down.

Tea in space

Interestingly, the strength of gravity in relation to the other forces that occur does not play a decisive role. Gravity merely determines the direction in which the jet is directed, but its strength is not decisive for the teapot effect. The teapot effect would therefore also be observed when drinking tea on a moon base, but not on a space station with no gravity at all.

The theoretical calculations on the teapot effect were published by the research team in September 2021 in the Journal of Fluid Mechanics. Now experiments were also carried out: Water was poured from an inclined teapot at different flow rates and filmed with high speed cameras. In this way, it was possible to show exactly how the wetting of the edge below a critical pouring rate leads to the “teapot effect”, thus confirming the theory.



Journal

Journal of Fluid Mechanics

DOI

10.1017/jfm.2021.612

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Developed liquid film passing a smoothed and wedge-shaped trailing edge: small-scale analysis and the ‘teapot effect’ at large Reynolds numbers

Article Publication Date

8-Sep-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

October 5, 2025
MeaB bZIP Factor Essential for Nitrosative Stress Response

MeaB bZIP Factor Essential for Nitrosative Stress Response

October 5, 2025

Exploring Plastid Genome Traits in Saururaceae

October 5, 2025

Exploring Splicing Patterns in Medicinal Rheum Palmatum

October 5, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Drug Interactions in Neonatal Care Software

Unveiling AGC2 Modulators through Advanced Assay Techniques

Exploring Zeolite-Template Chemical Space: A Comprehensive Mapping

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.