• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Why nature restoration takes time

Bioengineer by Bioengineer
February 8, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Elly Morriën et al. / Netherlands Institute of Ecology (NIOO-KNAW)

'Relationships' in the soil become stronger during the process of nature restoration. Although all major groups of soil life are already present in former agricultural soils, they are not really 'connected' at first. These connections need time to (literally) grow, and fungi are the star performers here. A European research team led by the Netherlands Institute of Ecology (NIOO-KNAW) has shown the complete network of soil life for the first time. This Wednesday, the results of the extensive study are published in Nature Communications.

Earthworms, fungi, nematodes, mites, springtails, bacteria: it's very busy underground! All soil life together forms one giant society. Under natural circumstances, that is. A large European research team discovered that when you try to restore nature on grasslands formerly used as agricultural fields, there is something missing. Lead author Elly Morriën from the Netherlands Institute of Ecology explains: "All the overarching, known groups of soil organisms are present from the start, but the links between them are missing. Because they don't 'socialise', the community isn't ready to support a diverse plant community yet."

When nature restoration progresses, you'll see new species appearing. But those major groups of soil life remain the same and their links grow stronger. "Just like the development of human communities", says Morriën. "People start to take care of each other. In the soil, you can see that organisms use each other's by-products as food." In this way, nature can store and use nutrients such as carbon far more efficiently.

Fungi as drivers

"Fungi turn out to play a very important role in nature restoration, appearing to drive the development of new networks in the soil." In agricultural soils, the thready fungal hyphae are severely reduced by ploughing for example, and therefore the undamaged soil bacteria have an advantage and rule here. The researchers studied a series of former agricultural fields that had changed use 6 to 30 years previously. With time, there is a strong increase in the role of fungi.

Earlier, researchers did look at fungal biomass, but that won't show you the whole story. "After six years, about 10% is fungal biomass and 90% is from bacteria. Still, we discovered that already at that stage, about half the carbon – being the food – goes to the fungi. After 30 years, that share has risen to three quarters of the carbon stored. Fungi really are the drivers in natural soils."

From steppe to savannah

The international team compared grassland soils from all over Europe. In the Netherlands, research fields on the Veluwe were included. "Worldwide, you find many types of grassland ecosystems. Think of steppes, tundras, prairies and savannahs."

A unique opportunity, Morriën calls it. Because of the European consortium EcoFINDERS, data for many species of soil organisms from many different locations could be studied. By labelling the carbon atoms, the research team was able to follow the food flow throughout the whole soil ecosystem. In this way, they could link the organisms to their corresponding functions in the community. Morriën: "This linking has never been done at such a large scale before. Now we can finally get an advanced view of a complete and intricate soil community." And who knows: "We might be able to help the fungi restore the missing links, which will speed up nature restoration considerably."

###

With more than 300 staff members and students, NIOO is one of the largest research institutes of the Royal Netherlands Academy of Arts and Sciences (KNAW). The institute specialises in water and land ecology. As of 2011, the institute is located in an innovative and sustainable research building in Wageningen, the Netherlands. NIOO has an impressive research history that stretches back 60 years and spans the entire country and beyond.

Media Contact

Froukje Rienks
[email protected]
31-610-487-481
@niooknaw

http://www.nioo.knaw.nl

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Dynamic Fusion Model Enhances scRNA-seq Clustering

August 27, 2025

Assessing Platelet Dysfunction in Circulatory Support Devices

August 27, 2025

Microbes Link Iron Respiration to Sulfide Oxidation

August 27, 2025

Unveiling HERG Activator’s Action Against LQT2 Mutations

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dynamic Fusion Model Enhances scRNA-seq Clustering

Assessing Platelet Dysfunction in Circulatory Support Devices

Microbes Link Iron Respiration to Sulfide Oxidation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.