• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Why icicles are rippled

Bioengineer by Bioengineer
February 7, 2023
in Chemistry
Reading Time: 3 mins read
0
Icicles contain more salt
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Winter is coming to an end; the last nights of below zero temperatures are here. In the morning, one still spots the occasional icicle on a gutter or car bumper. When you look at these icicles carefully, you may notice that they show a characteristic pattern of ripples – always around one centimetre wide. What causes these ripples? Using an icicle machine of their own design, physicists and chemists from the University of Amsterdam investigated this question, and discovered that salt plays an important part in the formation process of the ripples.

Icicles contain more salt

Credit: UvA, Menno Demmenie

Winter is coming to an end; the last nights of below zero temperatures are here. In the morning, one still spots the occasional icicle on a gutter or car bumper. When you look at these icicles carefully, you may notice that they show a characteristic pattern of ripples – always around one centimetre wide. What causes these ripples? Using an icicle machine of their own design, physicists and chemists from the University of Amsterdam investigated this question, and discovered that salt plays an important part in the formation process of the ripples.

The research was carried out by PhD student Menno Demmenie and his colleagues of the Institute of Physics and the Van ’t Hoff Institute for Molecular Sciences at the University of Amsterdam. The results were published in the scientific journal Physical Review Applied last week.

Icicle machine

To carry out the research, Demmenie and his colleagues built an actual icicle machine. ‘In a large freezer with a window, we spent a few weeks becoming true icicle growth specialists’, Demmenie recalls. ‘The difficult question was how fast water must be added to make a nice icicle. If the water flows too quickly, one loses a relatively large amount of water, turning the floor of the freezer into a sheet of ice. On the other hand, if the flow of water is dialed down too much, the icicle tends to grow upward, like a stalagmite. Eventually we discovered that the optimal rate of growth occurs using an inflow of sixty millilitres per hour, at a temperature of -15 °C. This is comparable to a faucet dripping roughly once every three seconds.’

Once the correct inflow of water was found, the researchers could proceed. Using their machine they made many different icicles, under different circumstances and with different types of water. In the end, the crucial factor in the formation of icicle ripples turned out to be the concentration of salt in the water that was used. The image below shows icicles with different concentrations of salt, from an icicle made of extremely pure water (left) to icicles in relatively salty water (right). With the increase of the concentration of salt, the ripples on the icicles became more clearly visible.

The researchers used a clever trick to investigate the role that salt plays in the formation of icicles. When the water forming an icicle freezes, salt molecules get pushed out of the ice as ‘impurities’. As a result, most of the salt is found in a thin layer of liquid water on the outside of the icicle. The scientists added a colouring agent to the water they used, which underwent the same process as the salt molecules. This allowed them to nicely visualize where the liquid salty water was present.

Ripples explained

In this way, it was discovered that the flow of liquid water caused the ripples to appear. Using pure water, the layer of salty liquid water around the icicle was absent, and the formation process looked more like a dripping candle. When saltier water was used, the icicle was surrounded by a thin film of liquid, salty water, and the flow of that water created the regular ripples. The more salt the water contained, the stronger the process, causing thicker ripples to eventually form.

In nature, water always contains a small concentration of salt. This explains the beautiful structures we find on our gutters and car bumpers in the morning – rippled by a thin layer of slightly salty water that was at work throughout the night.

 

 



Journal

Physical Review Applied

DOI

10.1103/PhysRevApplied.19.024005

Article Title

Growth and Form of Rippled Icicles

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

October 23, 2025
Physicists Explore Atomic Nuclei Using Innovative Molecule-Based Technique

Physicists Explore Atomic Nuclei Using Innovative Molecule-Based Technique

October 23, 2025

Unlocking Smarter Devices and Safer Drugs: UH Crystals Expert Advances Crystal Formation Control

October 23, 2025

Nanoworld Breakthrough: Heat Transfer Rates Surpass Expectations

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    167 shares
    Share 67 Tweet 42
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Auditory Change Processing Markers Unusual in Autism

Innovative Center Pioneers Brighter Future for Trauma Survivors

Exploring Vicarious Trauma in Hospice Nurses

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.