• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Why do scientists chase unicorns?

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

IMAGE: MSU plant biologist Maren Friesen asks: Why do scientists chase unicorns?

Credit: G.L. Kohuth

EAST LANSING, Mich. – Scientists chase unicorns because if they could prove the existence of the magical beasts, the world would be a better place.

Take Maren Friesen, Michigan State University plant biologist, for example. Her quest was to find near-mythical bacteria that could fix their own nitrogen. Her search for such magical beasties was based on results from Germany published in the 1990s that seemed to confirm their existence.

The end result, published in the current issue of Nature's Scientific Reports, proved that the elusive bacteria, Streptomyces thermoautotrophicus, did in fact exist but didn't have any mythical qualities.

Most nitrogen-fixing bacteria use an enzyme that does not work when oxygen is present. The heat and toxic gas-loving strain that Friesen studied appeared to have exceptional properties, including harboring a special enzyme that was insensitive to oxygen. So why go on such a quest?

"If they actually existed, it would mean we could have plants that could fix their own nitrogen, a compound used in critical biological functions, with no need for nitrogen fertilizers," said Friesen. "In this dream world, there would be less pollution, less nitrogen runoff into rivers and streams, less greenhouse gas emissions, less fuel being used to transport and apply fertilizer."

That is a unicorn worth chasing, she added.

So why is it worth proving that it's a myth, that it doesn't exist?

While Friesen and an international team of scientists remained highly skeptical of the bacteria's existence, the positive result in the literature had long tantalized researchers. However, there were no other papers from independent labs to confirm the original findings.

"This outlying result was always there, always lingering in published papers," Friesen said. "Now we've been able to bury this once and for all."

The myth began in Germany, where the bacteria were discovered, and their mythical properties were suggested. They thrived in the hot, toxic fumes over traditional charcoal fires where large quantities of wood were buried and burnt down.

Friesen's collaborators traveled to Germany and gathered samples while she went to Centralia, Pa., where underground coal fires have been burning for decades. She was somewhat surprised that she was able to find the bacteria, lending a bit of credence to the myth.

The tale grew even more when they produced a positive result in the laboratory, demonstrating that the bacteria did indeed fix their own nitrogen. This, however, turned out to be a tainted result.

"We learned that the gas that everyone had been using for the experiments was contaminated," Friesen said. "For the next experiments, we had to introduce a number of new controls, which included washing or purifying the gas we used."

Dispelling the myth turned out to be a roller coaster of results and reactions – from actually finding the missing bacteria to a positive result that bolstered the tall tale, and from conducting many, many more experiments to finally killing the bacterial unicorn.

While one mythical notion died, the concept of international collaboration and open data grew. Scientists from Harvard University, Imperial College (London), Aachen University (Germany) and Universidad Nacional de Rosario, Zavalla (Argentina) contributed to key aspects of the research. Rather than focus on one experiment, the team conducted many experiments around the world.

"By sharing data, you can have a lot of influence," Friesen said. "The most-influential datasets are the ones that everyone is using. And as this research demonstrated, it's better to compare your results to other researcher's data than believe a singular result. Reproducibility is really key to good science."

Even if it means a few unicorns must die.

###

Friesen's research was funded in part by the NSF.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact

Layne Cameron
layne.c[email protected]
517-353-8819
@MSUnews

http://msutoday.msu.edu/journalists/

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Enhanced B-Cell Epitope Prediction via Hybrid Deep Learning

November 5, 2025
Gender, Surgery Side Influence Epilepsy Surgery Outcomes

Gender, Surgery Side Influence Epilepsy Surgery Outcomes

November 5, 2025

Revolutionizing Lignocellulosic Biomass: New Electrochemical Techniques

November 5, 2025

ISSCR and Stem Cell Network Unveil Global Initiative to Advance Regenerative Medicine Workforce Development

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced B-Cell Epitope Prediction via Hybrid Deep Learning

Gender, Surgery Side Influence Epilepsy Surgery Outcomes

Revolutionizing Lignocellulosic Biomass: New Electrochemical Techniques

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.