• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Why a stream of plasma makes chemical reactions more efficient

Bioengineer by Bioengineer
November 6, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Juliusz Kruszelnicki

WASHINGTON D.C., NOVEMBER 6, 2018 — A whiff of plasma, when combined with a nanosized catalyst, can cause chemical reactions to proceed faster, more selectively, at lower temperatures, or at lower voltages than without plasma — and nobody really knows why.

Using computer modeling, Juliusz Kruszelnicki of the University of Michigan investigated the interactions between plasmas and metal catalysts embedded into ceramic beads in a packed bed reactor. He discovered that together, the metals, beads and gas create plasma that intensifies electric fields and locally heats the catalyst, which can then accelerate reactions.

Kruszelnicki will talk about this work at the American Physical Society 71st Annual Gaseous Electronics Conference and 60th Annual meeting of the APS Division of Plasma Physics, which will take place next week, Nov. 5-9 at the Oregon Convention Center in Portland.

These plasma reactors have tremendous potential to make valuable chemical processes more efficient and cost-effective, such as removing air pollution, converting carbon dioxide into fuels and producing ammonia for fertilizer, through "plasma chemical conversion."

"Combining thermocatalytic systems and plasmas allows new avenues to produce chemical products you otherwise might not be able to, or perhaps to do so at higher efficiency," Kruszelnicki said.

Kruszelnicki modeled the interactions of plasma and catalysts using advanced multiphysics codes developed in the lab of Mark J. Kushner at the University of Michigan. These include modules for phenomena such as electromagnetics, surface chemistry, fluid dynamics and chemical kinetics. He modeled a packed bed reactor, which is a tube filled with ceramic beads, with an electrical current passing through concentric electrodes. When gases move through the reactor, catalysts cause them to react in specific ways, such as combining nitrogen and hydrogen to generate ammonia.

Kruszelnicki found that when the beads are embedded with metallic catalyst particles and then electrified, field emission of electrons takes place, which enables higher densities of plasma. The plasma heats the catalyst, which can cause the chemical reaction to proceed faster and more efficiently, potentially lowering the applied power needed for the reaction.

"Through this process of localizing the electric field, electrons can be emitted from the surface of the metal particles and start a plasma, where it otherwise wouldn't occur," Kruszelnicki said.

By simulating low-temperature plasma chemistry, Kruszelnicki and other members of the Kushner lab are discovering new ways that plasma and catalysts work together to make plasma chemical conversion more efficient than traditional chemical conversion. Currently they are working with the National Science Foundation's Industry-University Cooperative Research Centers Program to collaborate with companies to translate this research for use in industry. They also hope that these more efficient processes will be compatible with off-the-grid applications, such as making fertilizer for subsistence farmers using solar power.

###

Presentation #ET4.3, "Electric field emission and local surface heating in plasma packed bed reactors having metal catalyst-impregnated dielectric beads," by Juliusz Kruszelnicki will take place Tuesday, Nov. 6, 10:15 a.m. in Oregon Convention Center Room A107-A109. Abstract: http://meetings.aps.org/Meeting/GEC18/Session/ET4.3

USEFUL LINKS

Main meeting website: http://www.apsgec.org/gec2018/

Meeting abstracts: http://meetings.aps.org/Meeting/GEC18/APS_epitome

Hotel information: http://www.apsgec.org/gec2018/housing.php

PRESS REGISTRATION

We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact Rhys Leahy or the AIP Media Line ([email protected], 301-209-3090). We can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT GEC

GEC is a special meeting of the Division of Atomic, Molecular and Optical Physics (DAMOP) of the American Physical Society. GEC promotes invaluable exchange of scientific information, viewpoints, and approaches (experimental, theoretical, modeling, and numerical simulation) to understanding the physical and chemical processes occurring in partially ionized, collisional plasmas and between the atoms, molecules, charged particles, photons, waves, and fields. More: http://www.apsgec.org/gec2018/index.php

ABOUT DAMOP

The Division of Atomic, Molecular and Optical Physics (DAMOP) was founded in 1943, and it was the first division of the American Physical Society. Its central focus is fundamental research on atoms, simple molecules, electrons and light, and their interactions. More: https://www.aps.org/units/damop/index.cfm

ABOUT APS

The American Physical Society (APS) is a nonprofit membership organization working to advance the knowledge of physics. More: https://www.aps.org

Media Contact

Rhys Leahy
[email protected]
301-209-3090
@APSphysics

http://www.aps.org

Share12Tweet8Share2ShareShareShare2

Related Posts

Formula Use and NEC Risk in Preterm Infants

Formula Use and NEC Risk in Preterm Infants

September 20, 2025

Linking Stigma and Diabetes Control in Adults

September 20, 2025

Designing Dual Inhibitors: Tricyclic Compounds Target AChE/MAO-B

September 20, 2025

Assessing Environmental and Economic Effects of Farming Systems

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Formula Use and NEC Risk in Preterm Infants

Linking Stigma and Diabetes Control in Adults

Designing Dual Inhibitors: Tricyclic Compounds Target AChE/MAO-B

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.