• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Whiskers help nectar-eating “acro bats” hover like hummingbirds

Bioengineer by Bioengineer
February 8, 2023
in Biology
Reading Time: 4 mins read
0
Bat flight and feeding
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

From dragonflies to hummingbirds, hovering flight is among the most complex and captivating forms of animal movement—a physiological feat of size, musculature and wing development.

Bat flight and feeding

Credit: Eran Amichai

From dragonflies to hummingbirds, hovering flight is among the most complex and captivating forms of animal movement—a physiological feat of size, musculature and wing development.

For nectar-feeding bats that hover as they feed from flowers, this aerial maneuver also depends on extra-long whiskers unlike those of most other bat species, according to a Dartmouth College-led study in the journal Proceedings of the Royal Society B. The researchers used high-speed cameras to capture how the stiff hairs jutting forward from the face of nectar-eating bats provide enhanced spatial information that guides the animals as they swoop in to quickly feed—within a second or less—on succulent flowers without landing.

“The whiskers of nectar-feeding bats are critical sensory organs that provide high-quality input the brain works with to optimize hovering. It’s a cool junction between sensory biology and bio-kinematics, between form and function,” said lead author Eran Amichai, a postdoctoral researcher in biological sciences at Dartmouth who studies echolocation in bats. Co-authors are postdoctoral fellow David Boerma from the American Museum of Natural history, animal behavioralist Rachel Page at the Smithsonian Tropical Research Institute in Panama, Sharon Swartz, a professor of biology and engineering at Brown University, and Hannah ter Hofstede, a past assistant professor of biological sciences at Dartmouth now at the University of Windsor in Canada.

The researchers worked at the Smithsonian Tropical Research Institute recording Pallas’s long-tongued bats—a South and Central American bat that has the fastest metabolism of any mammal—as they drank from hand-blown glass flowers designed for the study to replicate the plants the animals feed from. High-speed infrared cameras captured photos and video of the bats as they descended upon the glass flowers and navigated their muzzles and tongues into the “bloom” to eat the nectar. Feedings typically lasted between a half- to one second.

The researchers found that bats with clipped whiskers were less agile and accurate during feeding and flight than animals with untouched whiskers. The animals with clipped whiskers were held for a few days until the hairs regrew, then released back into the jungle. “Clipping the whiskers doesn’t reduce the bats’ ability to feed, they just do it a little less gracefully,” Amichai said. “If it were gymnastics, they’d get an 8.5 instead of a 9.8.”

The role of long whiskers in nectar-feeding bats’ flight control provides new insight into the coevolution of the bats with the flowers they feed on, Amichai said. The majority of bats possess short whiskers not arranged in any particular pattern or direction. But the researchers found that whisker length in nectar-eating bats evolved at least twice to—along with long tongues and faces—potentially help them better navigate the deep chambers of the flowers they prefer. In turn, the long reach these flowers require results in more pollen sticking to their pollinators and thus the broader proliferation of their kind.

The researchers plan to continue their work using higher-resolution images, flowers that move, interactions with predators and other expansions on the experimental model, Amichai said.

In the meantime, the latest study offers a fascinating glimpse into how nectar-feeding bats combine various forms of sensory information to navigate the world around them, Amichai said. Their world is a combination of scent, echolocation, spatial memory, knowledge of the seasons and the physical sensation and equilibrium provided by their whiskers.

“I find thinking in these terms of switching back and forth between completely different ways to perceive the world—and seamlessly integrating their input—to be a mind-blowing concept,” Amichai said. Understanding how animals perceive and interact with their surroundings helps scientists develop better conservation strategies, he said.

“We are strange animals—we rely almost solely on vision and, to a lesser extent, hearing to perceive the world. As a result, we interpret other animals’ behavior in similar terms and that often leads us to completely misinterpret what they’re doing and why,” Amichai said. “Understanding the sensory world of other animals helps us ‘see the world through their eyes’ and understand their behavior, needs and challenges better.”

The paper, “By a Whisker: The Sensory Role of Vibrissae in Hovering Flight in Nectarivorous Bats,” was published Feb. 1 by the Proceedings of the Royal Society B. The work was supported by a Journal of Experimental Biology Travelling Fellowship (JEBTF1911291) from The Company of Biologists.



Journal

Proceedings of the Royal Society B Biological Sciences

DOI

10.1098/rspb.2022.2085

Method of Research

Experimental study

Subject of Research

Animals

Article Title

By a whisker: the sensory role of vibrissae in hovering flight in nectarivorous bats

Article Publication Date

1-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025
blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025

Unraveling the Connections Between Brain Development and Mental Health

November 4, 2025

ASBMB Announces Launch of Insights in Biochemistry and Molecular Biology, a New Journal Showcasing Breakthroughs Across Molecular Life Sciences

November 4, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring T Cell Immunotherapy in Pancreatic Cancer

Hemoglobin Glycation Index Predicts Diabetes Risk

Evaluating Cognitive Workload: A Safety Management Review

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.