• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Which research results in mice will help humans with MS? Now…

Bioengineer.org by Bioengineer.org
January 21, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jessie J. Polanco

BUFFALO, N.Y. — People with multiple sclerosis (MS) know all too well the frustration of hearing that success in treating the disease in mice had little or no effect in humans.

Unfortunately, with no large animal models for MS, results that suggest promising new treatments in mice often are ineffective in humans. Now, University at Buffalo researchers have developed and successfully tested a method for determining how relevant to the human disease findings are from mouse models. The research was published Aug. 8 in Stem Cell Reports.

"This is an important resource for the field as it allows us to compare human and rodent cells, and provides a point of reference to understand whether or not gene expression patterns are conserved between species," said Fraser Sim, PhD, senior author and associate professor in the Department of Pharmacology and Toxicology in the Jacobs School of Medicine and Biomedical Sciences at UB. Co-first authors are Suyog U. Pol PhD, now a postdoctoral fellow, and Jessie J. Polanco, a doctoral candidate, both in the medical school.

MS trial failures

"There have been so many failures in clinical trials for MS when promising observations are translated from small animal models to the clinic," Sim said. "Our primary motivation was to try to understand, at a molecular level, how the human cells responsible for synthesizing myelin differ from their much-better-studied mouse counterparts."

MS and some other neurological diseases occur when there is damage to myelin – the fatty sheath that allows nerve cells to communicate. So the myelin-producing cells, called human oligodendrocyte progenitor cells, or OPCs, found in the brain and spinal cord have been a major focus of efforts to better understand MS and develop potential new treatments for it.

Sim explained that undifferentiated OPCs are frequently found in the brain lesions of MS patients, so boosting the differentiation of these cells could lead to myelination and a reduction of symptoms.

From OPCs to oligodendrocytes

One reason why so many clinical trials fail may be because of fundamental differences in the types and levels of genes expressed between mice and humans. Sim and his colleagues addressed this question by performing gene-expression analysis on differentiating human OPCs.

"In this paper, we describe the transcriptional events that underlie how human OPCs develop into oligodendrocytes," said Sim.

To do it, they used a network analysis software tool called weighted gene coexpression network analysis (WCGNA). The software clusters together genes with similar patterns of expression. It also allows for analysis of both conserved and divergent gene expression between humans and rodents. "WCGNA looks at the relationships between genes rather than absolute differences between conditions in any given experiment," Sim said.

He added that the information encoded in levels of gene expression increasing or decreasing is very reliable and reproducible.

"We performed WCGNA in exactly the same manner on cells isolated from mice, rats and humans, and prepared these cells in as close to matched conditions as possible, trying to keep things as similar as possible to facilitate this comparison," said Sim.

It turned out several of the genes the team had identified as relevant to human disease also are involved in mouse development and mouse models of myelin disease.

New myelin-repairing gene

Based on its findings from that analysis, the team had predicted that GNB4, a protein involved in signal transduction, would be involved in the development of OPCs in humans. The researchers found that over-production of GNB4, a protein involved in the transduction of extracellular signals, could cause human OPCs to rapidly undergo myelination when transplanted into a model for human cell therapy in MS.

"So this protein's expression in oligodendrocyte progenitor cells might ultimately become a therapeutic target, potentially promoting oligodendrocyte formation in MS patients," said Sim.

The approach also identified several other important candidates that play key roles in regulating the development of human oligodendrocytes.

###

Other co-authors on the paper are Melanie A. O'Bara, research scientist; Hani J. Shayya, a UB undergraduate and Karen C. Dietz, PhD, research assistant professor, all of the Department of Pharmacology and Toxicology and Richard A. Seidman, a master's candidate in neuroscience.

The research was funded by the National Multiple Sclerosis Soociety, the Kalec Multiple Sclerosis Foundation, the Skarlow Memorial Trust and the Empire State Stem Cell Fund (NYSTEM) through the New York State Department of Health.

Media Contact

Ellen Goldbaum
[email protected]
716-645-4605
@UBNewsSource

http://www.buffalo.edu

Original Source

http://www.buffalo.edu/news/releases/2017/08/013.html

Share12Tweet7Share2ShareShareShare1

Related Posts

Discovering Safer Implant Designs for Total Hip Replacement

October 28, 2025

Multi-Lens Ultrasound Maps 3D Organ Microvasculature

October 28, 2025

Faster Brainstem Neural Signals in Small Premature Infants

October 28, 2025

Exploring Methodological Diversity in Swedish Nursing Theses

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering Safer Implant Designs for Total Hip Replacement

Multi-Lens Ultrasound Maps 3D Organ Microvasculature

Faster Brainstem Neural Signals in Small Premature Infants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.