• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

When yesterday’s agriculture feeds today’s water pollution

Bioengineer by Bioengineer
October 8, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study led by researchers at Université de Montréal quantifies for the first time the maximum amount of nutrients – specifically, phosphorus – that can accumulate in a watershed before additional pollution is discharged into downriver ecosystems.

That average threshold amount is 2.1 tonnes per square kilometre of land, the researchers estimate in their study published today in Nature Geoscience. "Beyond this, further phosphorus inputs to watersheds cause a significant acceleration of (phosphorus) loss in runoff."

This amount is shockingly low, the researchers say; given current nutrient application rates in most agricultural watersheds around the world, tipping points in some cases could be reached in less than a decade.

The study was led by Jean-Olivier Goyette, a doctoral student in biology at UdeM, and supervised by UdeM aquatic ecosystem ecologist Roxane Maranger in collaboration with sustainability scientist Elena Bennett at McGill University.

Phosphorus, an element in fertilizer, is essential to the growth of plant food. But the mineral is also harmful when overused. When it gets into surface water, it can lead to excessive plant growth in lakes and rivers and proliferation of toxic algae, harmful to human and animal health.

23 watersheds studied

Focusing on 23 watersheds feeding the St. Lawrence River in Quebec, the researchers reconstructed historic land-use practices in order to calculate how much phosphorus has accumulated on the land over the past century.

The two main sources of phosphorus to watersheds, the land adjacent to tributaries, come from agriculture (fertilizers and animal manure) and from the human population (through food needs and sewage).

Using Quebec government data, the researchers matched the estimated accumulation with phosphorus concentrations measured in the water for the last 26 years. Since the watersheds they studied had different histories – some had been used intensively for agriculture for decades whereas others were forested and pristine – this method allowed the researchers to establish a gradient of different phosphorus accumulations among sites. In so doing, they were able to see at what point the watershed "tipped" or reached a threshold and began to leak considerably more phosphorus into the water.

"Think of the land as a sponge," Maranger said. "After a while, sponges that absorb too much water will leak. In the case of phosphorus, the landscape absorbs it year after year after year, and after a while, its retention capacity is reduced. At that point historical phosphorus inputs contribute more to what reaches our water."

Until now, no-one had been able to put a number to the amount of accumulated phosphorus at the watershed scale that's needed to reach a tipping point in terms of accelerating the amount of the mineral flowing into the aquatic ecosystem.

'Really important contribution'

"This is a very important finding," Bennett said. "It takes our farm-scale knowledge of fertilizers and pollution and scales it up to understand how whole watersheds respond within a historical context."

Agriculture on a mass scale began in Quebec only in the 1950s, but some of the province's more historical agricultural watersheds had already passed the tipping point by the 1920s, the study found.

Even if phosphorus inputs ceased immediately, eliminating the accumulated phosphorus in saturated Quebec watersheds would take between 100 and 2,000 years, the researchers estimate.

In some countries, including China, Canada, and the US, phosphorus is so heavily used now that the saturation point is reached in as little as five years.

"Nutrient management strategies developed using novel creative approaches … are urgently required for the long-term sustainability of water resources," the researchers urge in their study.

Recycle and reuse

"One possible mitigating measure would be to do what is already being done in some European countries: instead of adding more and more to help plants grow, phosphorus already stored in soils can be accessed using new practices and approaches," Goyette said.

"Furthermore, phosphorus can be recycled and reused as fertilizer rather than accessing more of the raw mined material."

The dilemma is this: humans need to eat but need to have clean water, yet growing food requires phosphorus that pollutes the water when too much leaves the watershed and pollutes adjacent aquatic ecosystems.

"Are some of our more extreme (agricultural) watersheds impossible to repair?" Maranger asked. "I can't answer that. It's a societal issue and there are solutions. We should never despair, but it's a wicked problem."

###

About this study

"Low buffering capacity and slow recovery of anthropogenic phosphorus pollution in watersheds," by J.O. Goyette, E.M Bennett and R. Maranger, was published Oct. 8, 2018, in Nature Geoscience. DOI: 10.1038/s41561-018-0238-x

Media Contact

Jeff Heinrich
[email protected]
514-343-7593
@uMontreal_news

http://bit.ly/mNqklw

http://dx.doi.org/10.1038/s41561-018-0238-x

Share12Tweet8Share2ShareShareShare2

Related Posts

Nasal Staph Affects Mice Mood by Hormone Breakdown

Nasal Staph Affects Mice Mood by Hormone Breakdown

September 22, 2025
Cold Stress Alters Morphology and Genes in Corn Roots

Cold Stress Alters Morphology and Genes in Corn Roots

September 22, 2025

Breakthrough Discovery of a ‘Nearly Universal’ Pharmacological Chaperone for Rare Diseases

September 22, 2025

Exploring Enterococcus faecium Infections in Mexican Children

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nasal Staph Affects Mice Mood by Hormone Breakdown

Harmonic Generation in Topological Van der Waals Metamaterials

Slc7a7 Enables Macrophage Glutaminolysis to Combat Atherosclerosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.