• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

When treating brain aneurysms, two isn’t always better than one

Bioengineer by Bioengineer
February 16, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: Credit: Ding Ma.

BUFFALO, N.Y. — The old adage about two being better than one doesn't necessarily apply to brain surgery. That's according to a study performed by University at Buffalo engineers that used high performance computing to examine how to best treat aneurysms.

To reduce blood flow into aneurysms, surgeons often insert a flow diverter — tiny tubes made of weaved metal, like stents — across the opening of an aneurysm. With the blood flow into the aneurysm reduced, the risk of rupture is minimized.

If the opening, or neck, of an aneurysm is large, surgeons will sometimes overlap two diverters, to increase the density of the mesh over the opening. Another technique is to compress the diverter to increase the mesh density and block more blood flow.

But which technique is better?

A computational study published in January in American Journal of Neuroradiology points to the single, compressed diverter provided that it produces a mesh denser than the two overlapped diverters, and that it covers at least half of the aneurysm opening.

The research, which is ongoing, could eventually help doctors determine the best way to treat patients suffering from aneurysms.

"When doctors see the simulated blood flow in our models, they're able to visualize it. They see that they need to put more of the dense mesh here or there to diffuse the jets (of blood), because the jets are dangerous," said Hui Meng, a mechanical engineering professor at UB and lead author of the study.

Meng, PhD, holds appointments in UB's School of Engineering and Applied Sciences and the Jacobs School of Medicine and Biomedical Sciences. She is also co-director of the Toshiba Stroke Research Center at UB.

Using UB's supercomputer

Working with UB's supercomputing facility, the Center for Computational Research, Robert Damiano and Nikhil Paliwal, both PhD candidates in Meng's lab, used virtual models of three types of aneurysms — fusiform (balloons out on all sides), and medium and large saccular (balloons on one side) — and applied engineering principles to model the pressure and speed of blood flowing through the vessels.

The engineers modeled three different diverter treatment methods – single non-compacted, two overlapped, and single compacted — and ran tests to determine how they would affect blood flow in and out of the aneurysm using computational fluid dynamics.

"We used equations from fluid mechanics to model the blood flow, and we used structural mechanics to model the devices," Damiano said. "We're working with partial differential equations that are complex and typically unsolvable by hand."

These equations are converted to millions of algebraic equations and are solved using the supercomputer. The very small size of the mesh added to the need for massive computing power.

"The diverter mesh wires are 30 microns in diameter," Paliwal said. "To accurately capture the physics, we needed to have a maximum of 10 to 15 micron grid sizes. That's why it is computationally very expensive."

Compressed versus overlapped

The models showed that compressing a diverter produced a dense mesh that covered 57 percent of a fusiform-shaped aneurysm. That proved more effective than overlapping two diverters.

The compacted diverter was less effective in saccular aneurysms. As diverters are compressed, they become wider and bump into the sides of the vessel, so they could not be compressed enough to cover a small opening of an aneurysm. Compression was more effective in a large necked saccular aneurysm, producing a dense mesh that covered 47 percent of the opening.

Complete coverage of an aneurysm using a solid diverter is not favorable because a porous scaffold is needed to allow cell and tissue growth around the neck of the aneurysm, Paliwal said. In addition, the danger of blocking off smaller arteries prevents the use of solid diverters.

Next, as part of a National Institutes of Health-funded project, the team wants to look back over hundreds of previous cases, to determine how blood flow was affected by the use of diverters. The idea is to build a database so that more definitive conclusions can be drawn.

"We're going to look at and model previous cases, and hopefully we'll have a way to determine the best treatment to cause the best outcome for new aneurysm cases," Damiano said.

###

Contact:

Grove Potter
[email protected]
University at Buffalo
716-645-2130

Media Contact

Grove Potter
[email protected]
716-645-2130
@UBNewsSource

http://www.buffalo.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Hyperthermia Linked to Reduced Radiation Pneumonitis

November 8, 2025
blank

Impact of Organic Amendments on Black Cumin Growth

November 8, 2025

Exploring Food Addiction: Psychology, Self-Control, and Eating

November 8, 2025

Whole Genome Sequencing Reveals Tuberculosis Resistance in Huzhou

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hyperthermia Linked to Reduced Radiation Pneumonitis

Impact of Organic Amendments on Black Cumin Growth

Exploring Food Addiction: Psychology, Self-Control, and Eating

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.