• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, February 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

When theoretical and practical collide: researchers introduce new optimal recommendations for fungicide resistance management

Bioengineer by Bioengineer
March 24, 2023
in Science News
Reading Time: 3 mins read
0
Figure 3
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fungicide application, while helpful in controlling plant diseases, has complicated limitations that may cost growers both peace of mind and quantity of yield. Plant pathogens which would otherwise be killed off by fungicides can evolve to avenge their dead siblings, developing resistance that renders the standard dose of fungicide application ineffective. To delay fungicide resistance, growers commonly use mixtures of fungicides to treat yield-limiting fungal diseases—based on extensive research outlining how to construct these mixtures. However, this research does not completely translate to the common, real-world scenario where one fungicide has been available longer than the other, begging the question: what is the optimal strategy for application of fungicide mixtures when the initial levels of resistance to each fungicide differ?

Figure 3

Credit: Nick P. Taylor and Nik J. Cunniffe

Fungicide application, while helpful in controlling plant diseases, has complicated limitations that may cost growers both peace of mind and quantity of yield. Plant pathogens which would otherwise be killed off by fungicides can evolve to avenge their dead siblings, developing resistance that renders the standard dose of fungicide application ineffective. To delay fungicide resistance, growers commonly use mixtures of fungicides to treat yield-limiting fungal diseases—based on extensive research outlining how to construct these mixtures. However, this research does not completely translate to the common, real-world scenario where one fungicide has been available longer than the other, begging the question: what is the optimal strategy for application of fungicide mixtures when the initial levels of resistance to each fungicide differ?

To address this question, Nick Taylor and Nik Cunniffe from the University of Cambridge in the United Kingdom constructed a simple, alternative strategy by analyzing a mathematical model that incorporates pathogen sexual reproduction, which rarely is included in modelling studies despite its relevance to the evolutionary dynamics of fungal pathogens. Their paper, recently published in Phytopathology, applies the model to an economically important disease, Septoria leaf blotch on wheat, and provides an extensive analysis of its evolutionary dynamics.

Taylor and Cunniffe use the theoretical and mathematical model to find the optimal disease management strategy when initial resistance frequencies to the two fungicides in the mixture differ. The model demonstrates that previous modelling recommendations for fungicide resistance management are suboptimal and may fail in varying real-world circumstances. In contrast, their novel strategy is optimal even when initial resistance frequencies differ and when fungicide parameters and the proportion of between-season pathogen sexual reproduction varies. Additionally, they find that between-season pathogen sexual reproduction can affect the rate of resistance development but does not qualitatively affect the optimal strategy recommendation.

While this may seem complicated, Taylor comments, “The most exciting aspect of this research is the idea that such a complex problem can have a very simple solution. Although managing pathogen resistance to mixtures containing pairs of fungicides to which pathogens can potentially acquire resistance is difficult and complex, the optimal management strategy reliably works and is simple to state: the fungicide application program should be designed so that resistance to both fungicides is balanced by the end of the program.”

Ultimately, their strategy aims to balance disease control with resistance management by balancing resistance to both fungicides until resistance has increased so much that the program fails.

This strategy recommendation is robust to variations in parameters controlling pathogen epidemiology and fungicide efficacy, and once this strategy is verified experimentally in the future, it could potentially influence policy recommendations surrounding effective agricultural disease management. Cunniffe looks forward to “extending these ideas to allow for more complex models including fungicide resistance, as well as for resistance management strategies that vary over time.”

For additional details, read Optimal Resistance Management for Mixtures of High-Risk Fungicides: Robustness to the Initial Frequency of Resistance and Pathogen Sexual Reproduction published in Vol. 113, No. 1 January 2023 of Phytopathology.
 

Follow the authors on social media

Nick Taylor: LinkedIn

Nik Cunniffe: Twitter @nikcunniffe, LinkedIn

 

Follow us on Twitter @PhytopathologyJ and visit https://apsjournals.apsnet.org/journal/phyto to learn more.



Journal

Phytopathology

DOI

10.1094/PHYTO-02-22-0050-R

Article Title

Optimal Resistance Management for Mixtures of High-Risk Fungicides: Robustness to the Initial Frequency of Resistance and Pathogen Sexual Reproduction

Article Publication Date

25-Jan-2023

COI Statement

The author(s) declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

UK’s Rising Synthetic Opioid Crisis: Nitazene-Linked Deaths May Be Underreported by Up to 33%

February 9, 2026
Mapping NYC Foot Traffic: Insights for Urban Planning

Mapping NYC Foot Traffic: Insights for Urban Planning

February 8, 2026

Evaluating Digital Diabetes Screening’s B2C Potential in Switzerland

February 8, 2026

Resilient Together: A Promising Post-Diagnosis Intervention

February 8, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UK’s Rising Synthetic Opioid Crisis: Nitazene-Linked Deaths May Be Underreported by Up to 33%

Mapping NYC Foot Traffic: Insights for Urban Planning

Evaluating Digital Diabetes Screening’s B2C Potential in Switzerland

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.