• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

When severe infection causes long-term mood disorders: A promising avenue to prevent mental illness following a transient infection

Bioengineer by Bioengineer
April 20, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The brain is able to detect and regulate localized or systemic inflammation by using two communication pathways. The first, humoral, makes use of specific brain structures that enable circulating inflammatory mediators to enter the brain. The second, neural, involves nerves whose sensory afferents transmit the inflammatory signal detected at local level.

Section of a mouse brain observed using a fluorescence microscope.

Credit: @ Institut Pasteur/Mariana Alonso and Pierre-Marie Lledo

The brain is able to detect and regulate localized or systemic inflammation by using two communication pathways. The first, humoral, makes use of specific brain structures that enable circulating inflammatory mediators to enter the brain. The second, neural, involves nerves whose sensory afferents transmit the inflammatory signal detected at local level.

The vagus nerve therefore uses identified receptors to detect a digestive or lung inflammation. Specific brain structures and networks perceive and integrate these humoral and neural messages and orchestrate a regulatory response involving neuroendocrine, neurovegetative and behavioral elements. These corrective interventions are controlled respectively by the hypothalamus and the hypophysis – the autonomic nervous system and the limbic system. Neuroendocrine activation is characterized by the release of cortisol, the main stress hormone. The autonomic response involves the combined activation of the sympathetic and vagal systems, with the latter believed to induce a local anti-inflammatory response. Behavioral changes affect mood, attention, sleep and appetite. The aim of the overall response is to control inflammation so as to preserve bodily integrity, or homeostasis. But in some circumstances, it can be ill adapted and can lead to immunological and/or psychological disorders.

A severe infection known as sepsis is the most common condition capable of inducing this defense strategy against inflammatory stress. Sepsis is the leading cause of death worldwide and represents a major public health challenge. What makes the situation worse is that sepsis is also associated with chronic psychological disorders such as anxiety, depression and post-traumatic stress disorder. These conditions significantly increase suicide risk and have a lasting impact on the personal, social and professional lives of patients. “No preventive treatments have so far been demonstrated to be effective, probably because of a lack of understanding of the pathophysiology of these disorders, especially the neural networks implicated in their onset,” explains Professor Tarek Sharshar, Head of the Sainte-Anne Neurology Department.

In an experimental study published in the journal Brain, a team of scientists from the Institut Pasteur (Perception and Memory laboratory) and clinicians from the Paris Psychiatry and Neurosciences University Hospital Group (GHU) (Neurological Resuscitation Department) used pharmacogenetic techniques to identify a dedicated neural circuit comprising the central nucleus of the amygdala and the bed nucleus of the stria terminalis. The activation of this circuit in the first few hours of sepsis induces anxious behavior two weeks after the infection has cleared. This behavior observed in mice mimics the post-traumatic stress disorder observed in patients recovering from sepsis.

“This discovery paves the way for new therapeutic strategies for sepsis: we observed that administering an agent capable of preventing the hyperactivation of this circuit reduces the risks of developing anxiety disorders,” explains Professor Pierre-Marie Lledo, Institut Pasteur and CNRS. This effect is thought to be partly linked with reduced activation of the vagal afferent integration center.

This study is of particular interest because it identifies both a dedicated circuit for post-sepsis anxiety and a potential pharmacological treatment. The latter will soon be tested in a multicenter randomized therapeutic trial. By revealing the link between neuroinflammation and psychiatric disorders, this research resonates with the current context of the COVID-19 pandemic and long COVID.



Journal

Brain

DOI

10.1093/brain/awab475

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Silencing of amygdala circuits during sepsis prevents the development of anxiety-related behaviors

Article Publication Date

20-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Common Cold Could Offer Protection Against COVID-19, Finds National Jewish Health Study

Common Cold Could Offer Protection Against COVID-19, Finds National Jewish Health Study

August 26, 2025

Unraveling Ferroptosis in Esophageal Cancer Therapy

August 26, 2025

Impact of Iranian Medicinal Plants on Pancreatic Cancer

August 25, 2025

One-Year Outcomes for Severe Anorexia Nervosa Treatment

August 25, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    145 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Common Cold Could Offer Protection Against COVID-19, Finds National Jewish Health Study

Unraveling Ferroptosis in Esophageal Cancer Therapy

Impact of Iranian Medicinal Plants on Pancreatic Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.