• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

When sciences come together

Bioengineer by Bioengineer
March 9, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Kyoto University / Chris Vincenot

Kyoto, Japan — In a new report in the Proceedings of the Royal Society B, Christian E Vincenot from Kyoto University's Department of Social Informatics investigates how seemingly separate concepts in scientific fields fuse to become universal approaches.

Sometimes it's just a matter of a few words and key papers.

Research collaboration can represent a peak of scientific advancement. The merging of concepts leads to previously unexplored questions and methods, spurring innovation. But disciplinary boundaries limit such development, hindering understanding of key vocabulary or concepts.

Vincenot chose to compare two modeling concepts: ABM — agent based modeling — and IBM — individual based modeling. ABM is used frequently in the computer sciences, while IBM is utilized primarily in ecology.

As it turns out, both are based on the same principle, and are used to study complex systems by modeling a single individual and then scaling that behavior up to a larger population.

"A few years ago I was presenting my research at an interdisciplinary talk involving ecologists and computer scientists," reflects Vincenot. "I started using ABM and IBM interchangeably, which began to cause confusion. People unfamiliar with the similarity were surprised when I told them that the modeling principles are the same."

These interactions raised the question: how do two concepts evolve separately in different scientific domains and then converge into a universal standard?

Vincenot began by developing a new methodology to analyze citations in papers that used the two terms, and tracked the changes over time. He mapped individual papers and connect these with papers they had cited, resulting in publications citing the same paper being close to each other.

ABM and IBM, he found, were initially disjointed and isolated within their respective fields. But over time, the literature began to merge, and by 2015 — 12,000 publications later — a distinct fusion of the two terms could be observed.

"The most surprising thing is that only a few publications were required for this fusion between ABM and IBM to happen," explains Vincenot. "Out of all the papers, only six were key for the fusion. And these weren't necessarily the most cited papers."

He hypothesizes that three things are needed for fusion to occur: researchers being aware of issues in different fields; common language, terminology, and software being developed; and most importantly, developing more unified theories.

Vincenot clarifies: "Awareness and communication are enough to instigate interdisciplinary work, but ultimately they are insufficient to give rise to a self-standing science. We need more transcendental theories, which serve as frameworks for sciences to develop in a self-sustaining manner. Basically, we must interpret current results and use them as building blocks to recursively create new theories."

The next step in his study is to confirm the conjectures by using other concepts and terms in science. Thankfully the methodology is easy to apply: it's just a matter of finding new ideas.

###

The paper "How new concepts become universal scientific approaches: insights from citation network analysis of agent-based complex systems science" appeared 7 March 2018 in Proceedings of the Royal Society B, with doi: 10.1098/rspb.2017.2360

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Media Contact

Raymond Kunikane Terhune
[email protected]
81-757-535-728
@KyotoU_News

http://www.kyoto-u.ac.jp/en

Related Journal Article

http://dx.doi.org/10.1098/rspb.2017.2360

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.