• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

When proteins court each other, the dance moves matter

Bioengineer by Bioengineer
March 15, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Reprinted with permission of Biophysical Journal.

BUFFALO, N.Y. — At every moment inside the human body, a carefully choreographed dance is being performed.

Proteins shake their bodies and wave their limbs, all with the goal of optimizing their interaction with other molecules, including other proteins. These tiny motions, called vibrations, enable the molecules to change shape quickly to bind to one another, which in turn facilitates tasks like absorbing oxygen and repairing cells.

The body's efficiency at performing these functions depends on how well proteins can interact.

But what makes one protein a better suitor than another?

A new study sheds light on this question, showing that in this biological courtship, dance moves matter.

"In the past, research on protein vibrations focused a lot on the energy of those vibrations," says lead scientist Andrea Markelz, PhD, a professor of physics in the University at Buffalo College of Arts and Sciences. "But what we found is that the direction of motion seems to matter more. The direction of motion — the direction in which different parts of the protein are moving — can really determine how well a protein performs its biological function."

The findings help to lay a foundation for the development of drugs targeting molecular vibrations. Such pharmaceuticals would block proteins from carrying out tasks that contribute to disease.

"We conducted the research using a new technique we developed called anisotropic terahertz microscopy (ATM), which reveals how nature exploits protein motions to improve efficiency. We can then optimize these motions for medicine and biotechnology," says first author Katherine Niessen, a UB PhD candidate in physics.

The research, published on March 14 in Biophysical Journal, was conducted by UB, the University of Perugia in Italy, and Hauptman-Woodward Medical Research Institute. It was funded by the National Science Foundation (NSF).

Foxtrot or tango?

The study focused on the chicken egg white lysozyme, a protein found in egg whites.

As a first step in their project, the scientists compared the regular vibrations of the lysozyme to the vibrations of the lysozyme when it was bound to a molecule whose presence blocked the protein from carrying out its usual biological duties.

What the scientists saw was that the free and inhibited lysozymes vibrated at similar energies, but with distinct directions of motion: The free lysozyme fluttered with a hinge-like flapping action — like the wings of a butterfly — while the inhibited lysozyme moved in a more scissor-like pattern.

"The result was a fundamental change from the conventional view. The vibrations changed their direction, even as the energy of the motions stayed the same," Markelz says. (She adds that as an analogy, this is akin to two people performing different dances — the foxtrot and tango, for instance — but exerting the same amount of energy.)

The same dynamic emerged when the team compared the regular lysozyme to a mutant chicken egg white lysozyme that was more effective at performing its job. The mutant and normal lysozymes had the same vibrational energies, but different vibrational directions.

A turnkey instrument for measuring vibrations

Research on molecular vibrations could open new avenues for drug development and artificial energy harvesting (the vibrations may explain why photosynthesis is so efficient). But historically, the tiny pulses and palpitations within proteins have been very hard to study.

Markelz is hoping to change that by developing a turnkey instrument that scientists around the world can use to research the vibrations.

To study the chicken egg white lysozyme, her team employed the ATM technique that her research group developed in-house. Unlike other methods used to research protein vibrations, ATM enables scientists to observe not only vibrational energies, but also the direction of motions.

The NSF recently awarded Markelz a nearly $400,000 grant to commercialize an easy-to-use ATM instrument, which would expand the capacity of the scientific community to explore molecular vibrations. The device would represent a great advance over other existing methods, which provide only a coarse overview of the vibrations and require extremely dry and cold environments and expensive facilities, Markelz says.

###

Media Contact

Cory Nealon
[email protected]
716-645-4614
@UBNewsSource

http://www.buffalo.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Navigating Transition: Care Triad’s Journey to Nursing Homes

November 5, 2025
Innovative Adhesive Formula Boosts Pesticide Deposition Efficiency

Innovative Adhesive Formula Boosts Pesticide Deposition Efficiency

November 5, 2025

Impact of RISE Program on Contraceptive Equity in Uganda

November 5, 2025

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Navigating Transition: Care Triad’s Journey to Nursing Homes

Innovative Adhesive Formula Boosts Pesticide Deposition Efficiency

Impact of RISE Program on Contraceptive Equity in Uganda

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.