• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

When conditions cool down, a bacterial prey species becomes the predator

Bioengineer by Bioengineer
January 23, 2024
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a new study, two species of bacteria grown in a lab reversed their predator-prey relationship after one species was grown at a lower temperature. Marie Vasse of MIVEGEC, France, and colleagues publish these findings January 23rd in the open access journal PLOS Biology.

When conditions cool down, a bacterial prey species becomes the predator

Credit: Nicola Mayrhofer (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/)

In a new study, two species of bacteria grown in a lab reversed their predator-prey relationship after one species was grown at a lower temperature. Marie Vasse of MIVEGEC, France, and colleagues publish these findings January 23rd in the open access journal PLOS Biology.

Prior research has shown that ecological context can influence predator-prey relationships. For instance, similarity or contrast between background color and coloration of a prey species can influence how easily it is detected by predators. In addition, predator-prey relationships can sometimes switch, as is the case for two crustacean species that mutually prey on each other, where a change in surrounding salinity reverses which species dominates. However, there are few other known examples of such switching in response to non-biological ecological changes.

Some bacteria prey on others, and ecological context can influence predation efficiency. Building on that knowledge, Vasse and colleagues conducted several laboratory experiments to test how temperature might influence the predator-prey relationship between the bacterial species Myxococcus xanthus and Pseudomonas fluorescens.

They found that, when P. fluorescens was grown in a dish at 32 degrees Celsius and then exposed to M. xanthus, M. xanthus acted as the predator and extensively killed P. fluorescens. However, after P. fluorescens was grown at 22 degrees Celsius, the predator-prey relationship switched, with P. fluorescens killing and obtaining nutrients from M. xanthus for its continued growth.

The researchers conducted further experiments to better understand the mechanism by which growth at chillier temperatures may have reversed the predator-prey roles. They homed in on a non-protein substance released by P. fluorescens that is lethal to M. xanthus, the production of which appears to be influenced by temperature.

The researchers say their findings suggest that many forms of microbe-microbe killing not traditionally associated with predation – the consumption of a killed organism by its killer – may in fact result in it. They also note that, in this study, the temperature at which P. fluorescens grew before meeting M. xanthus could determine which would be predator and which prey when the two species met later, highlighting the importance of considering historical context when evaluating present predator-prey relationships.

This study and follow-up research could aid understanding of both natural ecology and practical applications, such as optimizing the use of some microbes to control others.

The authors add, “We find it fascinating that a relatively small change in just one ecological factor can determine who kills and eats whom in microbial predation. We suspect that microbe-microbe killing results in predation far more often than has previously been appreciated.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002454

Citation: Vasse M, Fiegna F, Kriesel B, Velicer GJ (2024) Killer prey: Ecology reverses bacterial predation. PLoS Biol 22(1): e3002454. https://doi.org/10.1371/journal.pbio.3002454

Author Countries: France, Switzerland

Funding: This work was funded by Swiss National Science Foundation (SNSF) grants 31003A_160005 and 310030B_182830 to GJV. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002454

Method of Research

Experimental study

Subject of Research

Cells

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Nautilus Shells: Conservation, Crafts, and Legal Challenges

August 28, 2025
EBLN3P Enhances Gastric Cancer Growth and Spread

EBLN3P Enhances Gastric Cancer Growth and Spread

August 28, 2025

Two Fish Species, Two Strategies: A Novel Model Unveils Insights into Working Memory

August 28, 2025

Not All Calories Are Created Equal: How Ultra-Processed Foods Impact Men’s Health

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gastrointestinal Effects of Incretin Obesity Drugs Explored

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

New CEA-Based Surveillance Boosts Gastric Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.