• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

What happens to a dying cell’s corpse? New findings illuminate an old problem

Bioengineer by Bioengineer
March 19, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Laboratory of Developmental Genetics at The Rockefeller University

Death is certain for all living things, including the body's cells. The act of dying is in fact as sophisticated as any process a cell might perform during its lifetime–and when glitches in cell death occur, they can lead to disease or developmental defects.

A team of Rockefeller scientists led by Shai Shaham are interested not only in how cells die, but also in what happens to their corpses. When a cell begins to self-destroy, other cells descend on it to clear away the remnants, which could cause harm if left to loiter. In particular, perishing cells with elaborate shapes–like certain neurons, for example–pose challenges for phagocytes, the cells whose task it is to vacuum up cellular debris.

Now, the researchers report on an unusual cell-death process whose discovery could shed new light on how cells bury their dead.

Working in C. elegans, a microscopic worm, the team zeroed in on a particular cell called the tail-spike cell, which sports a long, slender extension. This cell provides structural support during the tail's formation, after which, considering its mission accomplished, it dies.

In examining the death of the tail-spike cell, Piya Ghose, a postdoctoral fellow in the lab and lead author of a recent report published in Nature Cell Biology, saw that it looked nothing like other cell-death processes.

"Curiously, the middle of the cell is spliced out first," Ghose says.

Dying piece by piece

Indeed, images captured by the team reveal that the process begins with the core part of the cell being severed from its extension, then rounding itself up and gradually disintegrating. The lingering extension vanishes in two steps, driven by different degenerative processes.

"The part of the extension closest to the cell body is broken up into bead-shaped bits," Ghose says, "while the distal part retracts into a ball, which is then removed by a neighboring cell."

It would be easy to dismiss the whole process as a biological quirk–a phenomenon with little relevance for anything but the C. elegans tail-spike cell–if it weren't for the fact that the researchers have watched another worm cell, a neuron, die in the exact same way. "Since we see this phenomenon in two different cell types with complicated shapes, it is conceivable that similar death events occur in many animals, and perhaps even in human disease," says Shaham, who is Rockefeller's Richard E. Salomon Family Professor.

What's more, in delving into the mechanisms that drive this "compartmentalized" death, his team made discoveries that will be useful for understanding the general way in which phagocytes–the body's vacuum cleaners–go about their job. For example, Ghose and Shaham have found that a protein called EFF-1 helps a phagocyte seal its arm-like extensions around a dead cell remnant, allowing it to quickly gobble it up.

"How such sealing takes place had been a long-standing mystery," Shaham says. He believes that these findings may represent the beginnings of an entire molecular framework that remains to be explored. "There is a lot we don't understand about this remarkable death process," he says, "and we are hot on the trail of additional players."

###

Media Contact

Katherine Fenz
[email protected]
212-327-7913
@rockefelleruniv

http://www.rockefeller.edu

Original Source

https://www.rockefeller.edu/news/21595-happens-dying-cells-corpse-new-findings-illuminate-old-problem/ http://dx.doi.org/10.1038/s41556-018-0068-5

Share12Tweet8Share2ShareShareShare2

Related Posts

Prenatal Exposure to Urban Heat Dome Linked to Behavioral Issues in Children

Prenatal Exposure to Urban Heat Dome Linked to Behavioral Issues in Children

August 23, 2025
blank

Harnessing the Power of the Non-Coding Genome to Advance Precision Medicine

August 23, 2025

WTAP Drives DNA Repair via m6A-FOXM1 in Liver Cancer

August 22, 2025

Unraveling SOX2: Its Crucial Role in Prostate Cancer Progression and Therapy Resistance

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prenatal Exposure to Urban Heat Dome Linked to Behavioral Issues in Children

First-ever observation of the transverse Thomson effect unveiled

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.