• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

What does the koala genome tell us about the taste of eucalyptus?

Bioengineer by Bioengineer
July 10, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kyoto University / Takashi Hayakawa

Koalas have long captured people's hearts and minds thanks to their cuddly features and seemingly relaxed demeanor.

Now, in a collaborative study by the Koala Genome Consortium — involving 54 scientists at 29 institutions, including Kyoto University — researchers have successfully sequenced the entire koala genome, uncovering much that has been unknown about these mesmerizing marsupials.

Past studies have revealed many unique features of the koala's morphology, physiology and ecology. However, little was known about the animal's genome. With this study published in Nature Genetics, the koala is now the fourth marsupial species to have its genome sequenced, providing further understanding of the genetic background of its biology, and establishing a high-quality genomic reference for marsupial mammals.

The consortium sequenced over 3.4 billion base pairs and 26,000 genes in the koala genome. With this new data, Takashi Hayakawa of Kyoto University's Primate Research Institute and Don Colgan of the Australian Museum analyzed the evolutionary background of the koala's taste receptor genes relating to its unique adaptation to feed on eucalyptus.

"Initial studies gave us insight into genes related to sensory receptors and detoxification enzymes, and I was curious about the koala's pallet," explains Hayakawa. "In all animals, including humans, 'bitterness' is usually a warning sign indicating toxicity. Eucalyptus leaves are toxic to most animals but as much to koalas, and we were interested in how they perceive these leaves."

After analyzing the genome, the duo found that koalas have more bitter taste receptor genes than any other Australian marsupial, and even more than most mammals. This enables the animals to detect toxic metabolites contained in eucalyptus, suggesting koalas can discriminate the toxicity levels of the leaves they ingest.

"Koalas have been shown to demonstrate selectivity in the leaves they consume, avoiding as much of a plant's toxic metabolite as possible," states Hayakawa. "Expansions in the taste receptor gene catalog enable koalas to optimize ingestion of nutrients and avoid plant toxins."

Further analysis also showed that koalas appear to have functional receptors for both sweetness and umami perception, previously not observed in other animals with highly specialized diets.

"A complete genome sequence is the gold standard in understanding any unique biological quality of an animal," concludes Hayakawa. "Knowledge of the koala genome is going to play a pivotal role in the conservation of these animals."

###

The paper "Adaptation and conservation insights from the koala genome" appeared 02 July 2018 in Nature Genetics, with doi: 10.1038/s41588-018-0153-5

About Kyoto University

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Media Contact

Raymond Kunikane Terhune
[email protected]
81-757-535-728
@KyotoU_News

http://www.kyoto-u.ac.jp/en

Related Journal Article

http://dx.doi.org/10.1038/s41588-018-0153-5

Share12Tweet8Share2ShareShareShare2

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Analog Speech Recognition via Physical Computing

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

Forensic Imaging Uncovers Torture in Asylum Seekers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.