• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

What causes the brain’s emotional hub to switch to negative states?

Bioengineer by Bioengineer
July 6, 2022
in Biology
Reading Time: 4 mins read
0
Understanding the molecular interactions that switch the basolateral amygdala into and out of negative network states
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tucked into the temporal lobe, near the base of our brain, sits a small, almond-shaped region called the amygdala that processes our emotions. Neuroscientists at Tufts University have been investigating the symphony of signals created within a subsection of this area—the basolateral amygdala—to better understand how they contribute to negative feelings such as anxiety and fear.

Understanding the molecular interactions that switch the basolateral amygdala into and out of negative network states

Credit: “File:MRI Location Amygdala up.png” by Amber Rieder, Jenna Traynor, Geoffrey B Hall is marked with CC0 1.0.

Tucked into the temporal lobe, near the base of our brain, sits a small, almond-shaped region called the amygdala that processes our emotions. Neuroscientists at Tufts University have been investigating the symphony of signals created within a subsection of this area—the basolateral amygdala—to better understand how they contribute to negative feelings such as anxiety and fear.

“This emotional processing hub plays a role in a lot of different behaviors,” said Jamie Maguire, a Kenneth and JoAnn G. Wellner Professor in the neuroscience department at Tufts University School of Medicine and a member of the neuroscience program faculty at the Graduate School of Biomedical Sciences (GSBS). “We’re interested in how the network switches into these negative states, which is relevant to many different disorders, such as depression and post-traumatic stress disorder.”

In a recent paper published in the journal eNeuro, Maguire and her colleagues found that alcohol can change the pattern of activity in the basolateral amygdala in a mouse model, essentially telling the brain’s orchestra to play a different tune. This is the first study to show that alcohol is capable of altering these patterns, often referred to as network states. Their work opens the door to a better understanding of how the brain switches between different activity patterns associated with anxiety or other moods, which also may be relevant to alcohol dependence.

“We know one of the reasons people drink is to relieve anxiety or stress, which are associated with this area of the brain,” said Alyssa DiLeo, who is first author on the paper and was a GSBS doctoral student in Maguire’s lab at the time of the study. “Uncovering how alcohol changes these network states may be the first step in understanding the transition from first drink to an alcohol use disorder.”

The researchers found that alcohol can essentially shift a mouse’s brain to less of an anxious state and toward a more relaxed one. They were also able to identify specific receptors in the basolateral amygdala, known as delta subunit-containing GABA-A receptors, as an important part of the signaling network that causes this switch.

The effects were slightly different in male and female mice, Maguire said. Females seemed to need more alcohol than males to alter their network state, which might be related to the fact that female mice have fewer of the relevant receptors. Moreover, when the researchers deleted these receptors in male mice, the altered mice responded like their female counterparts.

“That tells us that these receptors are playing a role in these sex differences and how alcohol affects the basolateral amygdala network,” Maguire said.

A Fearful State of Mind

Earlier this year, Maguire and her team partnered with Tulane University cell and molecular biology professor Jeffrey Tasker and other researchers to pinpoint a different set of receptors in the basolateral amygdala that seem to be relevant to an animal’s fear response. In a study published in Nature Communications, the researchers used norepinephrine, a similar hormone to adrenaline, to stimulate the basolateral amygdala in mice and switch them into a fearful state.

Norepinephrine can interact with several neural receptors, but when the researchers deactivated one in particular, the α1A adrenoreceptor, the animals’ brains no longer went into the fearful mode.

“If you block norepinephrine’s ability to communicate with cells through this receptor, then you lose norepinephrine’s ability to create a fear state,” said Eric Teboul, a GSBS doctoral student in Maguire’s lab and lead author on the paper. “Being able to create a binary behavior—fearful or not fearful—gives us insight into how the brain actually computes and does things.”

By understanding the molecular interactions that switch the basolateral amygdala into and out of these negative network states, the researchers may find potential drug targets to help people treat mood disorders and addiction. A person suffering from post-traumatic stress disorder, for example, might be stuck in a fearful pattern of neural activity. Disrupting that pattern could help them recover.

Of course, it won’t be as simple as switching these circuits on or off, Teboul said.

“You don’t want to just take out the fear; you don’t want to take out the sadness; you don’t want to take out the stress, because there are good reasons that we feel stressed and fearful of things,” he said. “We want to understand how this amygdala region computes things so that we can balance it at a normal level.”



Journal

eNeuro

DOI

10.1523/ENEURO.0010-22.2022

Article Title

Sex differences in the alcohol-mediated modulation of BLA network states

Article Publication Date

4-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

New Insights into Human Cilia Shed Light on Childhood Diseases

New Insights into Human Cilia Shed Light on Childhood Diseases

October 2, 2025
Exploring Genetic Diversity and Virulence in Cupriavidus

Exploring Genetic Diversity and Virulence in Cupriavidus

October 2, 2025

Tiny Cellular Messengers in Obesity Speed Up Alzheimer’s-Related Brain Plaque Formation

October 2, 2025

Improving Ethiopian Livestock: Quality Challenges and Solutions

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    78 shares
    Share 31 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mount Sinai Study Reveals How Sex-Based Pelvic Differences Impact Spinal Screw and Rod Placement in Surgery

Prolonged U.S. Residency Linked to Rising Heart Disease Risk Among Immigrants

Virtual Reality: A Promising Tool for Alleviating Anxiety in Patients Facing Interventional Cardiovascular Procedures

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.