• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

What a twist: Silicon nanoantennas turn light around

Bioengineer by Bioengineer
November 16, 2016
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image courtesy of the press office of MIPT

A team of physicists from ITMO University, MIPT, and The University of Texas at Austin have developed an unconventional nanoantenna that scatters light in a particular direction depending on the intensity of incident radiation. The research findings will help with the development of flexible optical information processing in telecommunication systems.

Photons–the carriers of electromagnetic radiation–have neither mass nor electric charge. This means that light is relatively hard to control, unlike, for example, electrons: their flow in electronic circuits can be controlled by applying a constant electric field. However, such devices as nanoantennas enable a certain degree of control over the propagation of electromagnetic waves.

One area that requires the "advanced" light manipulation is the development of optical computers. In these devices, the information is carried not by electrons, but by photons. Using light instead of charged particles has the potential to greatly improve the speed of transmitting and processing information. To make these computers a reality, we need specific nanoantennas with characteristics that can be manipulated in some way–by applying a constant electric or magnetic field, for instance, or by varying the intensity of incident light.

In the paper published in Laser & Photonics Reviews, the researchers designed a novel nonlinear nanoantenna that can change the direction of light scattering depending on the intensity of the incident wave (Fig. 1). At the heart of the proposed nanoantenna are silicon nanoparticles, which generate electron plasma under harsh laser radiation. The authors previously demonstrated the possibilities of using these nanoparticles for the nonlinear and ultrafast control of light. The researchers then managed to manipulate portions of light radiation scattered forward and backward. Now, by changing the intensity of incident light, they have found a way to turn a scattered light beam in the desired direction.

To rotate the radiation pattern of the nanoantenna, the authors used the mechanism of plasma excitation in silicon. The nanoantenna is a dimer–two silicon nanospheres of unequal diameters. Irradiated with a weak laser beam, this antenna scatters the light sideways due to its asymmetric shape (blue diagram in Fig. 2A). The diameters of the two nanoparticles are chosen so that one particle is resonant at the wavelength of the laser light. Irradiated with an intense laser pulse, electron plasma is generated in the resonant particle which causes changes in the optical properties of the particle. The other particle remains nonresonant, and the powerful laser field has little effect on it. Generally speaking, by accurately choosing the relative size of both particles in combination with the parameters of the incident beam (duration and intensity), it is possible to make the size of the particles virtually the same, which enables the antenna to bounce the light beam forward (red diagram in Fig. 2a).

"Existing optical nanoantennas can control light in a fairly wide range. However, this ability is usually embedded in their geometry and the materials they are made of, so it is not possible to configure these characteristics at any time," says Denis Baranov, a postgraduate student at MIPT and the lead author of the paper. "The properties of our nanoantenna, however, can be dynamically modified. When we illuminate it with a weak laser impulse, we get one result, but with a strong impulse, the outcome is completely different."

The scientists performed numerical modeling of the light scattering mechanism, Fig. 2b. The simulation showed that when the nanoantenna is illuminated with a weak laser beam, the light scatters sideways. However, if the nanoantenna is illuminated with an intense laser impulse, that leads to the generation of electron plasma within the device and the scattering pattern rotates by 20 degrees (red line). This provides an opportunity to deflect weak and strong incident impulses in different directions.

Sergey Makarov, a senior researcher at the Department of Nanophotonics and Metamaterials at ITMO University concludes: "In this study, we focused on the development of a nanoscale optical chip measuring less than 200×200×500 nanometers. This is much less than the wavelength of a photon, which carries the information. The new device will allow us to change the direction of light propagation at a much better rate compared to electronic analogues. Our device will be able to distribute a signal into two optical channels within a very short space of time, which is extremely important for modern telecommunication systems."

Today, information is transmitted via optical fibers at speeds of up to hundreds of Gbit/s. However, even modern electronic devices process these signals quite slowly: at speeds of only a few Gbit/s for a single element. The proposed nonlinear optical nanoantenna can solve this problem, as it operates at 250 Gbit/s. This paves the way for ultrafast processing of optical information. The nonlinear antenna developed by the researchers provides more opportunities to control light at nanoscale, which is what is required in order to successfully develop photonic computers and other similar devices.

###

Media Contact

Nicolas Posunko
[email protected]
@phystech

https://mipt.ru/english/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

High-Fat Winter Snacks Could Mislead the Body Into Gaining Weight

October 23, 2025

Cellarity Unveils New Framework for Discovering Cell State-Correcting Medicines in Science

October 23, 2025

Parental Opioid Prescriptions Associated with Increased Opioid Use in Teens and Young Adults

October 23, 2025

New Study Reveals Origins of Urban Human-Biting Mosquito and Explains Rise in West Nile Virus Transmission from Birds to Humans

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    165 shares
    Share 66 Tweet 41
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Fat Winter Snacks Could Mislead the Body Into Gaining Weight

Cellarity Unveils New Framework for Discovering Cell State-Correcting Medicines in Science

Parental Opioid Prescriptions Associated with Increased Opioid Use in Teens and Young Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.