• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Weird and wonderful world of fungi shaped by evolutionary bursts, study finds

Bioengineer by Bioengineer
August 15, 2022
in Biology
Reading Time: 2 mins read
0
Image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the University of Bristol have discovered that the vast anatomical variety of fungi stems from evolutionary increases in multicellular complexity.

Image

Credit: Thomas Smith

Scientists at the University of Bristol have discovered that the vast anatomical variety of fungi stems from evolutionary increases in multicellular complexity.

Most people recognise that fungi come in an assortment of shapes and sizes. However, these differences, often referred to as the disparity of a group, had never been analysed collectively.

Researcher Thomas Smith, who conducted the study while at Bristol’s School of Earth Sciences, explained: “Prior to our analyses, we didn’t know how this variety was distributed across the different types of fungi. Which groups are the most varied when considering all parts of the fungal body plan? Which are the least? How has this variety accumulated and diminished through time? What has shaped these patterns in disparity? These are the questions we sought to answer.”

What they found was that fungal disparity has evolved episodically through time, and that the evolution of multicellularity in different fungi appears to open the door for greater morphological variety. They saw increases in disparity associated with both the emergence of the first multicellular fungi, and then the evolution of complex fruiting bodies such as mushrooms and saddles in dikaryotic species. These fungi are defined by the inclusion of a dikaryon, a cell with two separate nuclei, in their life cycles.  

The main implication is that these results align with those of analyses of animal disparity. Both kingdoms present clumpy distributions of anatomical variety which have evolved intermittently through time.

Mr Smith said: “The world of fungi is defined by bright colours, strange shapes, and stranger anatomies. Our analyses demonstrate that this breath-taking anatomical variety has evolved in bursts, driven by evolutionary increases in multicellular complexity.”

The next step is to combine the datasets characterising the disparity of these two kingdoms and keep expanding the taxonomic net, starting with plants and algae. Nevertheless, this fungal dataset brings the team one step closer to characterising, visualising, and analysing the disparity of all multicellular life.

Paper:

‘Evolution of fungal phenotypic disparity’ by Thomas Smith and Professor Philip Donoghue in Nature Ecology and Evolution paper.

 



Journal

Nature Ecology & Evolution

Method of Research

Computational simulation/modeling

Subject of Research

Cells

Article Title

Evolution of fungal phenotypic disparity

Article Publication Date

15-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Global Research Team Unlocks the Complete Pangenome of Oats

October 29, 2025
blank

Groundbreaking Breakthrough in Visualizing Ribosome Assembly Unveiled

October 29, 2025

Breakthrough Quality Control Mechanism Uncovered in Yeast Peroxisomes

October 29, 2025

Study Links OsJAR2 to Rice Virus Resistance

October 29, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Powered Laser Tag Sheds Light on Cancer Origins

Global Research Team Unlocks the Complete Pangenome of Oats

Revolutionizing Solid Tumor Drug Development: The Impact of Artificial Intelligence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.