• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Weed’s wily ways explained in Illinois research

Bioengineer by Bioengineer
June 17, 2020
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lauren D. Quinn, University of Illinois

URBANA, Ill. – Like antibiotic-resistant bacteria, some herbicide-resistant weeds can’t be killed by available chemicals. The problem affects more than just the errant weed in our driveways; herbicide-resistant weeds threaten our food supply, stealing resources and outcompeting the crops that make up our breakfast cereal and feed the nation’s livestock.

The weed that represents the biggest threat to Midwestern corn and soybean production, waterhemp, has outsmarted almost every kind of herbicide on the market today.

University of Illinois scientists are working to reveal waterhemp’s tricks. Through years of research, they discovered the weed can ramp up production of detoxifying enzymes that neutralize certain herbicides before they can disrupt essential cellular processes. Metabolic resistance, as this strategy is known, is just one process by which waterhemp evades herbicides. Unfortunately, because there may be hundreds of detoxifying enzymes involved, metabolic resistance is hard to identify and even harder to combat.

In two recent studies, Illinois researchers explain metabolic resistance to three commonly used herbicides in waterhemp, getting closer to finding important genetic cues. Results also confirm the importance of using a multi-pronged approach to waterhemp control.

“These waterhemp populations are adapting and evolving incredible abilities to metabolize everything. It’s bad news, but at least we understand the mechanisms better. And ultimately, that understanding could potentially be exploited to use waterhemp’s metabolic arsenal against itself,” says Dean Riechers, professor in the Department of Crop Sciences at Illinois and co-author on both studies. “That’s one interesting way our research could be directly applied to controlling this weed.”

Last year, Illinois researchers documented resistance to Group 15 herbicides in waterhemp. This group of herbicides, including S-metolachlor, targets very-long-chain fatty acid production in sensitive plants. The researchers suspected it was also a case of metabolic resistance, and the Illinois team, led by graduate student Seth Strom, has now confirmed it in a study published in Pest Management Science.

“We were the first group in the world to show resistance to Group 15 herbicides in waterhemp, and now we have identified the mechanism behind it,” Riechers says. “Again, it’s not good news because it means we’re running out of herbicides, and in this case it involves pre-emergence herbicides.”

The study suggests two classes of detoxifying enzymes, known as GSTs and P450s, appear to neutralize S-metolachlor in resistant waterhemp.

Group 15 herbicides can be safely used in corn because the crop uses GSTs to naturally detoxify the chemicals; in other words, corn has a natural tolerance to these chemicals. Strom’s research suggests waterhemp is not only able to mimic corn’s natural detoxification mechanism, but it evolved an additional way to avoid being harmed by S-metolachlor.

Honing in on the two classes of detoxifying enzymes is not the end of the story, however. Because plants have hundreds of enzymes in each class, the researchers have more work ahead of them to identify the specific genes that are activated.

In a separate study, Riechers and another group of Illinois scientists revealed more of waterhemp’s metabolic secrets.

“We have known for the last 10 years that whenever we see waterhemp with resistance to an HPPD inhibitor in the field, such as mesotrione, it has always shown metabolic atrazine resistance, too. However, it is possible for waterhemp to be resistant to atrazine and not mesotrione,” Riechers says.

The apparent association between mesotrione and metabolic atrazine resistance could be coincidental, but given how often the resistances co-occur, Riechers thought the genes controlling resistance for the two chemicals might be shared or linked.

In a study published in Weed Science, graduate student Kip Jacobs demonstrated an overlap in the genes responsible for metabolic atrazine and mesotrione resistance. Because researchers already knew the single gene for metabolic atrazine resistance, the results get them closer to understanding the genes conferring mesotrione resistance.

“Whenever we find out whether it’s two or three or four genes involved in mesotrione resistance, our results tell us one of them should be the metabolic atrazine resistance gene,” Riechers says. “We know which one that is.”

Unfortunately, even if researchers are able to trace each resistance trait back to the genetic level, that won’t ensure an easy solution to the problem. Experts say there are no new herbicide sites-of-action coming into the marketplace, so farmers will need to consider alternative methods of weed control.

“With metabolic resistance, our predictability is virtually zero. We have no idea what these populations are resistant to until we get them under controlled conditions. It’s just another example of how we need a more integrated system, rather than relying on chemistry only. We can still use the chemistry, but have to do something in addition,” says Aaron Hager, associate professor in the Department of Crop Sciences at Illinois and co-author on the Pest Management Science study. “We have to rethink how we manage waterhemp long term.”

###

The Pest Management Science [DOI: 10.1002/ps.5868] and Weed Science [DOI: 10.1017/wsc.2020.31] studies are available online or by request. Funding was provided by Syngenta Crop Protection and the Weed Science Society of America. The Department of Crop Sciences is in the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois.

Media Contact
Lauren Quinn
[email protected]

Original Source

https://aces.illinois.edu/news/weeds-wily-ways-explained-illinois-research

Related Journal Article

http://dx.doi.org/10.1017/wsc.2020.31

Tags: Agricultural Production/EconomicsAgricultureBiologyEvolutionFertilizers/Pest ManagementGenesGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

How a Simple DNA Switch Enables Tropical Butterflies to Change Wing Patterns Seasonally: Insights from an NUS Study

How a Simple DNA Switch Enables Tropical Butterflies to Change Wing Patterns Seasonally: Insights from an NUS Study

October 24, 2025
blank

Circular RNAs Identified During Virus-Induced Mitochondrial Damage

October 24, 2025

DNA from Napoleon’s 1812 Army Reveals Pathogens Behind Their Devastating Retreat from Russia

October 24, 2025

Bacterial TIR Systems Detect Phage Capsids, Trigger Defense

October 24, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1279 shares
    Share 511 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    187 shares
    Share 75 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How a Simple DNA Switch Enables Tropical Butterflies to Change Wing Patterns Seasonally: Insights from an NUS Study

25-Year Study Reveals Incidence and Progression of Hearing Loss in Framingham Offspring Cohort

Circular RNAs Identified During Virus-Induced Mitochondrial Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.