• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Wayne State to enhance cybersecurity of chemical process control systems

Bioengineer by Bioengineer
December 16, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Alexis Wright, Wayne State University


DETROIT – Smart manufacturing processes are becoming more automated with the help of algorithms that aim to boost profits, reduce resource use and decrease human error. In industries using chemical reactions, separation and transport, these smart manufacturing processes are expected to enhance production efficiency. In health care, water treatment and irrigation systems, smart manufacturing is also making an impact; however, they face the challenge of cyberattacks on control systems that perform communication and computation to enable automation of these systems.

With the help of a three-year, $500,000 grant from the National Science Foundation, a research team from Wayne State University will comprehensively evaluate the characteristics of cyberattacks for processes involving chemical processes of different types, and will develop fundamental advances in control theory and algorithms for enhancing cybersecurity of control systems for these processes through control designs integrated with other frameworks such as detection algorithms.

Led by Helen Durand, Ph.D., assistant professor of chemical engineering and materials science in Wayne State’s College of Engineering, the team of researchers will work to design stronger safeguards against automation systems attacks that can impact critical factors such as safety, profitability or production volume.

“Our research will develop algorithms that detect cyberattacks and alert company personnel to their presence for chemical processes described by complex dynamic models,” said Durand. “Our project seeks to characterize the conditions under which the process automation algorithms can be made resilient to cyberattacks on various aspects of the automation systems so that attempted attacks are not successful.”

Durand and her team will determine the conditions under which cybersecurity enhancement is needed. They will create a mathematical formalization of different types of undesirable behaviors for various chemical processes where cyberattacks may occur. In addition, they will develop detection techniques that will guarantee a cyberattack will not create an undesirable behavior if it does penetrate certain information technology defenses. The team will also develop novel sensing and control capabilities for cyber-physical systems to increase flexibility of chemical processes to understand how they may be cyber-attacked.

The team’s work will lead to important processes for detecting cyberattacks to chemical processes in manufacturing industries that will alert company personnel to their presence in hopes to avoid costly — and potentially deadly — disasters.

###

The grant number for this National Science Foundation award, “Enhancing Cybersecurity of Chemical Process Control Systems,” is 1932026.

About Wayne State University

Wayne State University is one of the nation’s pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit research.wayne.edu.

Media Contact
Julie O’Connor
[email protected]
313-577-8845

Original Source

https://research.wayne.edu/news/wayne-state-receives-nsf-grant-to-enhance-cybersecurity-of-chemical-process-control-systems-35073

Tags: Biomedical/Environmental/Chemical EngineeringComputer ScienceSystem Security/HackersTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Rice miRNA: Key Regulator in Fungal Interactions

December 3, 2025
Human Impact Alters Leopard and Ungulate Dynamics

Human Impact Alters Leopard and Ungulate Dynamics

December 3, 2025

Adaptive Microsatellite Variants in Indian Yak Populations

December 2, 2025

Guide to Single-Cell RNA Transcriptomics Unveiled

December 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.