• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Wayne State receives $1.85 million NIH grant to identify novel antibiotic targets

Bioengineer by Bioengineer
October 26, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Julie O'Connor, Wayne State University

DETROIT – A research team from Wayne State University has received a $1.85 million grant from the National Institute of General Medical Sciences of the National Institutes of Health for the project "Mechanisms of Non-Shine-Dalgarno Translation Initiation." The project will be led by Jared Schrader, Ph.D., assistant professor of biological sciences in Wayne State's College of Liberal Arts and Sciences.

Antibiotics work in different ways, but some can attack the very basic process of making new proteins in bacterial cells. These antibiotics block translation, in which the cell reads information from a messenger RNA (mRNA) molecule, which it uses to build a protein. When antibiotics are taken, the antibiotic molecule will latch onto key translation molecules inside of bacterial cells and stall them so that proteins cannot be made, ultimately stopping the bacteria from functioning and causing it to eventually die.

In the model bacterium E. coli, it was discovered that a special sequence of RNA called a Shine-Dalgarno sequence is needed to dictate the ribosome on where to start decoding an mRNA into a protein.

The Shine-Dalgarno sequence is a ribosomal binding site in bacterial and archaeal messenger RNA. The RNA sequence helps recruit the ribosome to the mRNA to initiate protein synthesis by aligning the ribosome with the start codon.

"While the Shine-Dalgarno model is widely accepted as textbook knowledge for bacterial translation, genome sequencing of tens of thousands of bacterial species has revealed that many organisms, including many pathogens, lack Shine-Dalgarno sites in most of their mRNAs," said Schrader. "Without a Shine-Dalgarno, it's unclear how these bacteria are able to make the proteins encoded in their genomes."

Schrader and his collaborators aim to determine the molecular mechanisms of non-Shine-Dalgarno initiation in hopes to identify novel antibiotic targets effective against these groups of pathogens.

"Through our work, we have an exciting downstream possibility that what we uncover will allow us to design antibiotics that specifically target non-Shine-Dalgarno translation machinery," said Schrader. "This will open the door to new antibiotic treatments where bacteria have become difficult to treat or even resistant to antibiotics currently available."

The grant number for this National Institutes of Health project is GM124733.

###

About Wayne State University

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit research.wayne.edu.

Media Contact

Julie O'Connor
[email protected]
313-577-8845

http://www.research.wayne.edu/about/index.php

Original Source

http://research.wayne.edu/news/wayne-state-receives-185-million-nih-grant-to-identify-novel-antibiotic-targets-28315

Share12Tweet7Share2ShareShareShare1

Related Posts

More Children, Shorter Lifespan? Clear Evidence from the Great Finnish Famine

More Children, Shorter Lifespan? Clear Evidence from the Great Finnish Famine

November 7, 2025
“Sex Differences in Placental Androgen Response to Undernutrition”

“Sex Differences in Placental Androgen Response to Undernutrition”

November 7, 2025

COP6 Decision on Dental Amalgam Advances Equity-Focused, Patient-Centered Care

November 7, 2025

Exploring Metabolic Resistance in Malaria’s Anopheles coluzzii

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Care Quality: Lean Healthcare Performance Insights

Single-Cell Study Reveals Seminoma Stemness, Metastasis

More Children, Shorter Lifespan? Clear Evidence from the Great Finnish Famine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.