• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Wake Forest Baptist researchers find novel way to induce pancreatic cancer cell death

Bioengineer by Bioengineer
April 10, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WINSTON-SALEM, N.C. – April 10, 2017 – Pancreatic cancer, most frequently pancreatic ductal adenocarcinoma (PDAC), is the most lethal and aggressive of all cancers. Unfortunately, there are not many effective therapies available other than surgery, and that is not an option for many patients.

In an effort to better understand pancreatic cancer at a molecular level, scientists at Wake Forest Baptist Medical Center in collaboration with those at the University of Texas M.D. Anderson Cancer Center and Tianjin Medical University General Hospital in China, conducted a study to try to identify molecules that could become the next generation of therapeutics for this type of cancer. Results of their findings are published in the cover article in the April issue of the journal Autophagy.

Previous research had shown that micro RNA (MIR506), a small molecule produced in the human body, had functioned as a tumor suppressor in many human cancers and enhanced chemotherapy's effectiveness in ovarian cancer. The researchers hypothesized that this molecule was a viable option for further study in pancreatic cancer. Normally, MIR506 plays an important role in regulating cell behavior; adequate levels help the cells function normally, while decreased levels trigger cell growth and expansion occurring in tumors.

In this study, samples were taken from patients' tumors during surgery and transplanted into mice to grow new pancreatic cancer tumors.

"By using an animal model to expand tumor cells recently removed from patients, we hoped to re-create more closely what actually happens in patients with pancreatic cancer rather than by using existing artificial cell lines," said Wei Zhang, Ph.D., an endowed Hanes and Willis Family Professor in cancer at Wake Forest School of Medicine, a part of Wake Forest Baptist, and principal investigator of the study.

The scientists first observed that levels of MIR506 were lower in the tumor as compared to a normal pancreas. Next they treated the experimental tumor cells with MIR506 to determine if it would behave in the same way it had with ovarian and other cancers. They found that treating the pancreatic cancer cells with MIR506 inhibited both malignant cell growth and the cellular process that causes cancer to metastasize.

More importantly, Zhang and his team for the first time found that treating the pancreatic tumor cells with MIR506 induced autophagy, a process that occurs as a normal and controlled part of an organism's growth or development and that could promote cancer cell death.

"The potential therapeutic value of this finding is important because we could deliver MIR506 directly to pancreatic cancer cells using technologies like nanoparticles and exosomes," Zhang said. "Hopefully, this will provide us with a new way to fight this deadly form of cancer."

###

Co-authors are: Longhao Sun, M.D., Ph.D, Chao Gao, M.D., of Wake Forest Baptist; Longhao Sun, M.D., Ph.D., Weijun Tian, M.D., Zhixiang Zhang, M.D., Li Lu, Ph.D., of Tianjin Medical University General Hospital (China); Limei Hu, M.D., David Cogdell, M.S., Ya'an Kang, Ph.D., and Jason B. Fleming, M.D., University of Texas M.D. Anderson Cancer Center, Houston.

The study was partially supported by the National Cancer Institute under awards P3CA012197 to Wake Forest Baptist Comprehensive Cancer Center and P30CA016672 to MD Anderson Cancer Center. This work also was supported by a grant from the National Foundation for Cancer Research to Zhang and the Skip Viragh Family Foundation to Fleming. Zhang is supported by the Hanes and Willis Family Endowed Professorship in Cancer. Sun was supported by a postdoctoral fellowship from the Tianjin Medical University General Hospital in China and Comprehensive Cancer Center of Wake Forest Baptist.

Media Contact

Marguerite Beck
[email protected]
336-716-2415
@wakehealth

http://www.wfubmc.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Comparing Low and High-Tech Tools for Activity Schedules

November 1, 2025

Switching MS Patients: Anti-CD20 to Cladribine Tablets

November 1, 2025

Revolutionary ARDitox Uncovers Cross-Reactive TCR Epitopes

November 1, 2025

Cloud-Connected Tubeless Insulin Pump Improves Diabetes Management

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Low and High-Tech Tools for Activity Schedules

Switching MS Patients: Anti-CD20 to Cladribine Tablets

Revolutionary ARDitox Uncovers Cross-Reactive TCR Epitopes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.