• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Wait for it: Serotonin and confidence at the root of patience in new study

Bioengineer by Bioengineer
June 1, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: OIST

Just a little longer. It's a common experience: hanging on in the hopes that our patience will pay off in the end. From waiting from a restaurant seat to queuing at a theme park, we're all able to put our desire for immediate gratification to one side when we know there's something good coming up. Most of the time. But this isn't just a human trait – a new study shows that mice can be patient too, and reveals a link between the brain's chemical system and the mice's belief about how waiting will pay off.

The effect of the neuromodulator serotonin on mice's ability to stay patient when waiting for a reward is at the core of a new study published in Nature Communications. The authors, Dr. Katsuhiko Miyazaki and Dr. Kayoko Miyazaki, analyzed how the rodents behaved under the influence of serotonin, as part of a study conducted in the Neural Computation Unit at the Okinawa Institute of Science and Technology Graduate University (OIST).

Serotonin is a chemical messenger that influences neuron functions. It has been linked to a huge array of behaviors, from mood and sleep, to cravings and spontaneity. The power of the chemical over human behavior has made it a key focus in the treatment of mental conditions, such as depression by selective serotonin receptor inhibitors (SSRIs), which slow down the reabsorption of serotonin and keep it active in the brain.

"Serotonin has had a lot of study in pharmacology, and serotonergic drugs are commonly prescribed," said Katsuhiko Miyazaki, "but the role that serotonin has over behavior isn't clear". The team investigated for a causal relationship between serotonin levels and behavior in mice.

The mice were trained to perform a task to obtain a food reward: place their nose into a small hole and wait – dubbed a "nose poke". After a pre-set duration, the reward was delivered. In a previous study, the team used a method called optogenetics, a method which allows scientist to use light to stimulate specific neurons with precise timing. These neurons are genetically modified to a produce a light-sensitive protein that are then stimulated by shining light along a fiber optic implanted in the brain. In the study, serotonin-producing neurons were optogenetically stimulated in a part of the brain called the dorsal raphe nucleus (DRN), which output widely to the forebrain. The result was that increasing the activity of serotonin neurons in the DRN drastically increased the amount of time mice were willing to wait for a food reward.

While the study showed that serotonin increased patience, the latest study tested whether mice respond similarly in circumstances when getting a reward was uncertain. Would mice wait for food regardless of the probability and timing of it turning up, or would they give up if they predicted a low chance of return on their time investment?

The new trials showed there are limits to serotonin's ability to enhance patience. Mice were given a nose-poke trial with a 75% chance of a reward, with a 3 second waiting period before the reward was delivered. When these mice were subject to a no-reward outcome, their waiting time was prolonged, as expected from the previous paper. However, in tests where the chance of reward delivery following a nose-poke was 50% or 25%, increasing serotonin had no effect on the mice' waiting time. "The patience effect only works when the mouse thinks there is a high probability of reward" said Dr Miyazaki.

They also found that serotonin stimulation made the mice to wait longer when the timing of a reward was harder to predict. In a test with a 75% chance of getting a reward, in some sessions mice were rewarded after precise periods, while in other sessions they were rewarded after randomized timing. The extended waiting times by serotonin neuron stimulation were more prominent when the reward timing was randomized. (Fig. 2).

To help explain the results of their experiment, the team constructed a computational model to coherently explain the experimental data. In the model, the mice were able to expect when a food reward would be delivered, and to judge when they were subject to a no-reward trial. The model could reproduce the experimental results by assuming that serotonin affects the mice' confidence of receiving a reward when their subjective confidence is high. In a 75% reward probability trial, for example, serotonin made the mice behave as if there was a 95% chance of reward.

The model also reproduced the result of timing uncertainty. When the mice were uncertain of the timing of when a reward would be delivered, it became difficult for them to judge whether they were waiting in a reward trial or no-reward trial. Serotonin stimulation increased the mice's belief that they were in a reward trial, delaying their judgement further as reward timing was less clear.

The findings show that the relationship between the activation of serotonin and subsequent behavior is highly dependent on the animals' belief about the circumstances. These results may have implications for our understanding of how humans taking serotonin boosting drugs can also be affected. "This could help explain why combined treatment of depression with SSRIs and Cognitive Behavior Therapy (CBT) is more effective than just SSRIs alone," said Dr. Miyazaki. "The psychological boost of the therapy is enhanced by raised serotonin levels."

###

Media Contact

Kaoru Natori
[email protected]
81-989-662-389
@oistedu

http://www.oist.jp/

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-04496-y

Share12Tweet7Share2ShareShareShare1

Related Posts

New White Paper Calls on Policymakers to Update Practice Laws and Unlock AI’s Full Potential in Healthcare

October 20, 2025

Tumour Macrophages Fuel Liver Cancer Metastasis

October 20, 2025

Maternal Cell-Free RNA Predicts Early, Late Preeclampsia

October 20, 2025

Pharmacist-Led Medication Review for Sepsis Patients

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    298 shares
    Share 119 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New White Paper Calls on Policymakers to Update Practice Laws and Unlock AI’s Full Potential in Healthcare

Revealing the Causes of Battery Failure Using Graphene Mesosponges

Tumour Macrophages Fuel Liver Cancer Metastasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.