• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Virtually captured

Bioengineer by Bioengineer
June 23, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

IMAGE

Credit: Photo: Plant Biomechanics Group

Freiburg biologists Dr. Anna Westermeier, Max Mylo, Prof. Dr. Thomas Speck and Dr. Simon Poppinga and Stuttgart structural engineer Renate Sachse and Prof. Dr. Manfred Bischoff show that the trap of the carnivorous plant is under mechanical prestress. In addition, its three tissue layers of each lobe have to deform according to a special pattern. The team has published its results in the journal Proceedings of the National Academy of Sciences USA.

The diet of the Venus flytrap consists mainly of crawling insects. When the animals touch the sensory hairs inside the trap twice within about 20 seconds it snaps shut. Aspects such as how the trap perceives its prey and how it differentiates potential prey from a raindrop falling into the trap were already well known to scientists. However the precise morphing process of the halves of the trap remained largely unknown.

In order to gain a better understanding of these processes, the researchers have analyzed the interior and exterior surfaces of the trap using digital 3D image correlation methods. Scientists typically use these methods for the examination of technical materials. Using the results the team then constructed several virtual traps in a finite element simulation that differ in their tissue layer setups and in the mechanical behavior of the layers.

Only the digital traps that were under prestress displayed the typical snapping. The team confirmed this observation with dehydration tests on real plants: only well-watered traps are able to snap shut quickly and correctly by releasing this prestress. Watering the plant changed the pressure in the cells and with it the behavior of the tissue. In order to close correctly, the traps also had to consist of three layers of tissue: an inner which constricts, an outer which expands, and a neutral middle layer.

Speck and Mylo are members of the Living, Adaptive and Energy-autonomous Materials Systems (livMatS) cluster of excellence of the University of Freiburg. The Venus flytrap serves there as a model for a biomimetic demonstrator made of artificial materials being developed by researchers at the cluster. The scientists use it to test the potential uses of materials systems that have life-like characteristics: the systems adapt to changes in the environment and harvest the necessary energy from this environment.

###

The research was funded by the German Research Foundation (DFG) within the framework of the livMatS cluster of excellence, by the State Ministry of Baden-Württemberg for Sciences, Research and Arts within the framework of the BioElast project, and by the academic research alliance JONAS (“Joint Research Network on Advanced Materials and Systems”) established jointly with BASF SE and the University of Freiburg.

Original publication:

Sachse R, Westermeier A, Mylo M, Nadashi J, Bischoff M, Speck T, Poppinga S. (2020) Snapping mechanics of the Venus flytrap (Dionaea muscipula). In: Proceedings of the National Academy of Sciences USA, doi: 10.1073/pnas.2002707117

Contact:

Institute of Biology II

University of Freiburg

Media Contact
Dr. Simon Poppinga
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.2002707117

Tags: BiologyBiomechanics/Biophysics
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.