• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Virtual walking by synthesizing avatars into a 360-degree video

Bioengineer by Bioengineer
February 29, 2024
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Overview:

Schematic of the virtual walking experience

Credit: COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

Overview:

Researchers at the Toyohashi University of Technology and the University of Tokyo developed a system that provides a virtual walking experience to a seated person by real-time synthesis of a walking avatar and its shadow on a 360-degree video with vibrations to the feet. The shadow of the avatar induces an illusory presence of their body. In the future, it is expected to provide an immersive experience for any recorded medium with a virtual embodiment.

 

Details:

Walking is a fundamental activity for humans and an important exercise that is central to daily activities. A research team from Toyohashi University of Technology and the University of Tokyo is developing a system that provides a virtual walking experience for a seated person. The system aims to provide a walking experience in virtual environments using a 3DCG space and 360-degree live-action video.

 

In virtual environments, physical information or information for embodiment is an important factor in enhancing the experience. In this study, the walking experience was enhanced by adding physical information about the user, which was not originally included in the 360-degree video experience, and integrating it with the 360-degree video. The physical information comprises a walking avatar (virtual human), shadows created by light projecting onto the avatar, and vibrations created by the feet during walking. The walking experience can be acquired through the avatar and its shadow synthesized with a 360-degree video, and the use of long shadows enhances the sense of leg action and telepresence during walking. The findings of this study has been published in i-Perception on February, 22, 2024.

 

Development Background:

Various walking devices have been developed in the realm of virtual and metaverse realities. However, most of these involve actual limb movements. Such devices are large, complex, expensive, and not intended for home use. They are also highly dependent on their physical health. One of the features of this study is that a seated person can obtain the experience of walking without moving his or her legs. It is also compact in terms of system and cost and comprises a commercially available head-mounted display (HMD) and four vibrators attached to the feet.

 

The system is based on an 8 K-resolution 360-degree video of a person walking and moving, which is experienced through an HMD. The avatar composited into the 360-degree video is synchronized with the head movements of the user such that when they turn to the right, the avatar also turns to the right. The movements of the avatar were converted and rendered in real time into a 360-degree video format. The avatar was observed from a first-person perspective in which that of the user coincided with that of the avatar, which always coincided with the center of the 360-degree video. The shadow of the avatar is rendered directly in front of the travel direction and is always observed, even in the limited field of view of the HMD.

 

When the avatar walks and its feet land on the ground, the vibrations reach the feet of the user (heel and forefoot). Presenting an avatar and its motion with synchronized foot vibrations produces a powerful walking sensation.

 

Future Outlook:

Further development of a system that enables people to experience walking without moving their limbs is expected to provide enjoyment for several experiences that begin with walking, regardless of physical limitations, and improve the quality of life. In addition, by supporting formats that can record space, such as a 360-degree video, the system is expected to be used in several situations and deployed to a wider range of people. If the device becomes more compact, it will be possible to walk or travel home.

 

Reference:

Nakamura, J., Ikei, Y., and Kitazaki, M. (2023). Effects of self-avatar cast shadow and foot vibration on telepresence, virtual walking experience, and cybersickness from omnidirectional movie, i-Perception, 15(1). https://doi.org/10.1177/20416695241227857

 

Acknowledgements:

This research was supported in part by JST ERATO (JPMJER1701) for MK, JSPS KAKENHI JP22J21664 for JN, JP18H04118 for YI, and JP23H03882 for MK.

 



Journal

i-Perception

DOI

10.1177/20416695241227857

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Effects of self-avatar cast shadow and foot vibration on telepresence, virtual walking experience, and cybersickness from omnidirectional movie

Article Publication Date

22-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Mpox Virus Impact in SIVmac239-Infected Macaques

Mpox Virus Impact in SIVmac239-Infected Macaques

August 17, 2025
Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

August 17, 2025

Genkwanin Glycosides Boost Glucose Uptake in Fat

August 16, 2025

Biosilica Nanoparticles Combat Liver Ischemia Injury

August 16, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.