• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Virginia Tech scientist discovers potential brain link between stress, emotional eating

Bioengineer by Bioengineer
November 27, 2023
in Health
Reading Time: 3 mins read
0
Neuroscientists
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

If you’ve had a near miss accident in your car or suffered the intimidation of a menacing person, you’ve probably felt it — a psychological reaction to a threat called a fight or flight response. Your heart rate climbs, anxiety washes over you, you might shake or sweat.

Neuroscientists

Credit: Clayton Metz/Virginia Tech

If you’ve had a near miss accident in your car or suffered the intimidation of a menacing person, you’ve probably felt it — a psychological reaction to a threat called a fight or flight response. Your heart rate climbs, anxiety washes over you, you might shake or sweat.

But hours after that stress passes, you may feel another response — a powerful desire for comfort food, that highly processed, high-fat stuff you know isn’t good for you. It can relieve stress and tension and provide a sense of control. Emotional eating following a stress-triggering interaction is familiar to many of us, and to scientists as well.

But how a threat signals your brain to want comfort food has been unknown.

Now, a Virginia Tech scientist has pinpointed a molecule found in a region of the brain called the hypothalamus that is connected to changes in the brain that lead to emotional overeating. Sora Shin, assistant professor at the Fralin Biomedical Research Institute at VTC, and her research team described the discovery in a paper published Oct. 28 in Nature Communications.

“We don’t always eat because we are hungry and we have certain physical needs,” said Shin, who is also an assistant professor in the Department of Human Nutrition, Foods, and Exercise in Virginia Tech’s College of Agriculture and Life Sciences. “Whenever we get stressed or feel some threat, then it can also trigger our eating motivation. We think this molecule is the culprit.”

Shin and her research team began their study by investigating a small molecule, Proenkephalin. This molecule is common in multiple parts of the brain, but little research had examined its role in the hypothalamus. Shin suspected it played a role in stress and eating because the hypothalamus is a center for regulating eating behavior.

The lab exposed mice to the odor of cat feces. The odor of a natural predator triggered a threat response in the mice, and 24 hours later, the mice exhibited a negative emotional state, overeating behavior, and neurons in their brains showed sensitivity to consumption of high-fat foods.

To confirm the role of the molecule in stress-induced eating, the researchers activated the same neurons artificially with light stimulating a genetically encoded molecule expressed in the neuronal cell’s membrane, without the predator scent, and saw a similar response. In addition, when they exposed the mice to the cat odor and quieted the reaction of the neurons expressing that molecule with the same technique, the mice showed no negative emotional state and didn’t overeat.

“So something about this molecule itself is very critical to inducing overconsumption after the threat,” Shin said.

The discovery points toward a possible target for therapy to alleviate emotionally triggered eating.

“We have much more to learn about this molecule,” Shin said, “but we found its location and it could be a good starting point.”

Shin’s first-authors on the study are In-Jee You, a former research associate at the institute, and Yeeun Bae, a human nutrition, foods, and exercise graduate student working in her lab.



Journal

Nature Communications

DOI

10.1038/s41467-023-42623-6

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Lateral hypothalamic proenkephalin neurons drive threat-induced overeating associated with a negative emotional state

Article Publication Date

28-Oct-2023

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

APOE4 Drives Nigral Tau Phosphorylation via Cholesterol

October 22, 2025

The Link Between Professional Soccer and Osteoarthritis: Why So Many Players Are Affected

October 22, 2025

Efficient DTW: Analyzing Dynamic Psychiatric Processes

October 22, 2025

Enduring Challenges: Nurses’ Health in Resource-Limited Areas

October 22, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1272 shares
    Share 508 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    141 shares
    Share 56 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Bandwidth Cavity Modulation Enables Advanced Pulse Combs

Heteroatom-Doped Porous Carbon: A Sustainable Counter Electrode

APOE4 Drives Nigral Tau Phosphorylation via Cholesterol

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.