• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Virgin birth has scientists buzzing

Bioengineer by Bioengineer
May 7, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers discover a gene in honey bees that causes virgin birth

IMAGE

Credit: Professor Benjamin Oldroyd/University of Sydney

In a study published today in Current Biology, researchers from University of Sydney have identified the single gene that determines how Cape honey bees reproduce without ever having sex. One gene, GB45239 on chromosome 11, is responsible for virgin births.

“It is extremely exciting,” said Professor Benjamin Oldroyd in the School of Life and Environmental Sciences. “Scientists have been looking for this gene for the last 30 years. Now that we know it’s on chromosome 11, we have solved a mystery.”

Behavioural geneticist Professor Oldroyd said: “Sex is a weird way to reproduce and yet it is the most common form of reproduction for animals and plants on the planet. It’s a major biological mystery why there is so much sex going on and it doesn’t make evolutionary sense. Asexuality is a much more efficient way to reproduce, and every now and then we see a species revert to it.”

In the Cape honey bee, found in South Africa, the gene has allowed worker bees to lay eggs that only produce females instead of the normal males that other honey bees do. “Males are mostly useless,” Professor Oldroyd said. “But Cape workers can become genetically reincarnated as a female queen and that prospect changes everything.”

But it also causes problems. “Instead of being a cooperative society, Cape honey bee colonies are riven with conflict because any worker can be genetically reincarnated as the next queen. When a colony loses its queen the workers fight and compete to be the mother of the next queen,” Professor Oldroyd said.

The ability to produce daughters asexually, known as “thelytokous parthenogenesis”, is restricted to a single subspecies inhabiting the Cape region of South Africa, the Cape honey bee or Apis mellifera capensis.

Several other traits distinguish the Cape honey bee from other honey bee subspecies. In particular, the ovaries of worker bees are larger and more readily activated and they are able to produce queen pheromones, allowing them to assert reproductive dominance in a colony.

These traits also lead to a propensity for social parasitism, a behaviour where Cape bee workers invade foreign colonies, reproduce and persuade the host colony workers to feed their larvae. Every year in South Africa, 10,000 colonies of commercial beehives die because of the social parasite behaviour in Cape honey bees.

“This is a bee we must keep out of Australia,” Professor Oldroyd said.

The existence of Cape bees with these characters has been known for over a hundred years, but it is only recently, using modern genomic tools, that we have been able to understand the actual gene that gives rise to virgin birth.

“Further study of Cape bees could give us insight into two major evolutionary transitions: the origin of sex and the origin of animal societies,” Professor Oldroyd said.

Perhaps the most exciting prospect arising from this study is the possibility to understand how the gene actually works functionally. “If we could control a switch that allows animals to reproduce asexually, that would have important applications in agriculture, biotechnology and many other fields,” Professor Oldroyd said. For instance, many pest ant species like fire ants are thelytokous, though unfortunately it seems to be a different gene to the one found in Capensis.”

###

Media Contact
Elissa Blake
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2020.04.033

Tags: BiologyEntomologyEvolutionGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover Why Malaria Parasites Contain Rapidly Spinning Iron Crystals

October 29, 2025
blank

Study of Greater Yellowstone Ecosystem Reveals How Large Mammals Respond to Heat

October 29, 2025

Microbes Regulate Mammalian Cell Growth: New Insights Unveiled

October 29, 2025

Blood Proteomics Reveals Aging Signature: A Preliminary Study

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting FabH: New Antimicrobial Strategies Unveiled

Deep Learning Assessments of Corporate Finance in Sustainability

Ovarian Cancer Cells: Macrophage Interaction and Spheroid Formation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.