• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Versatile molecular system extends the promise of light-activated switches

Bioengineer by Bioengineer
October 10, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Aprahamian Research Group/Dartmouth College

HANOVER, N.H. – October 10, 2018 – Light-activated switches are too small to be seen by the naked eye, but the molecular systems are hard at work in research related to drug design, adaptive materials and data storage. To unlock the promise of new generations of medical therapies and memory systems, researchers must first overcome the drawbacks of the microscopic devices that can be difficult to produce and lack versatility.

Researchers at Dartmouth College have developed a new molecular switch based on the hydrazone functional group that combines the most important properties of the current class of light-activated switches and solves many of the problems associated with them. The newly-developed molecule is easy to make, simple to work with, shows "on-off" fluorescence emission toggling, and can be used to write, read and erase information in both the liquid and solid state.

Looking into the future, switches like these may potentially be used for the development of sophisticated photomedications that deliver drugs with cellular-level precision. In years to come, hydrazone switches might also lead to the development of high-density memory devices with the volume of a speck of a dust.

As detailed in the Journal of the American Chemical Society, Dartmouth's hydrazone system, "packs most, if not all, the desired, targeted and sought-after traits from photochromic compounds."

"This is a switch that can do it all," said Ivan Aprahamian, an associate professor of chemistry and head of the research team at Dartmouth. "What we developed is a new tool that combines all the good properties of known switches without their side effects, and in a simple, straight-forward design."

Similar to flipping a physical switch, photochromic switches rely on lights of different wavelengths to move molecules between the "on" and "off" positions. The fluorescent feedback produced during the switching process can be used to store and read huge amounts of data at microscopic scale and even provide signals about where a medication is being delivered after the drug enters into a patient's body, an important tool for drug targeting.

To toggle the switch in the Dartmouth study, researchers used a "blue light" operating at the same 450 nm wavelength of a laser pointer to write the information by activating the switch. A second 365 nm ultraviolet wavelength was used to erase the information by turning the switch off.

In the paper, the researchers demonstrated that the switch works in both water and fetal bovine serum buffer–a frequently used bio-medium–confirming that the molecular system can be useful as a drug delivery tool.

In addition to performing well in solution, the researchers found that the hydrazone switch also works on solid-state films. Molecules that go through large structural changes usually do not operate in solid state without complex manipulation. This added functionality allows it to be used effectively for data storage.

"Such an on-off fluorescence response in both solution and solid state for photochromic compounds is highly unusual," said Baihao Shao, a PhD student at Dartmouth and the first author of the study.

The team was able to use both single-photon and two-photon light sources to operate the new switch. The near infrared, two-photon system allows the light to penetrate tissue deeper and makes it safer for use with humans. Two-photon activation also allows for 3D microscopy techniques that are important for advanced data storage.

The research paper notes that the hydrazone switch has a half-life of 75 years in solution at room temperature. In solid state, the switch's memory could be indefinite. Such stability is another key feature that adds to its overall functionality for long-term data storage.

"We are extremely excited by the results as well as the reception it is getting from the scientific community. Based on these and yet unpublished results, we feel that this technology has the promise to be truly transformative," said Aprahamian.

During the experiment, some erasure did occur during reading as the excitation light also results in slow switching, creating a challenge that the researchers are working to minimize.

Massimo Baroncini, Hai Qian, Laura Bussotti, Mariangela Di Donato and Alberto Credi also contributed to this research. The research was done in collaboration with the University of Bologna.

###

Media Contact

David Hirsch
[email protected]
@dartmouth

http://www.dartmouth.edu

Related Journal Article

http://dx.doi.org/10.1021/jacs.8b07108

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025
When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025

Watch and Listen: Underwater Acrobatics of the World’s Smallest Marine Dolphin Featured in Science Magazine

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Hemolytic Disease in Newborns: Key Insights

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.