• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Velcro for human cells

Bioengineer by Bioengineer
January 15, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo: J. Baaske


The ability of cells to adhere to each other and to their environment is the basis for multicellular life. Adhesion occurs via diverse receptors at the surface of cells that bind to specific ligands in their surroundings. Despite the importance of these adhesion receptors, there is a paucity of tools available for precisely controlling their interactions with the environment. To address this limitation, an interdisciplinary team of scientists from the Freiburg Signalling Research Excellence Clusters BIOSS and CIBSS have engineered an adhesion receptor and a complementary synthetic extracellular environment that can be activated by light. This system can be adapted to render other receptor-ligand interactions amenable to precise manipulation with light. The scientists have published their new optogenetic system in Communications Biology.

Optogenetics uses light to control proteins and the cellular processes in which they are involved. “This technique has revolutionized the analysis of cellular signalling because it is non-invasive and because it allows precise spatiotemporal control of signalling processes”, says lead author of the study, Prof. Dr. Wilfried Weber. Optogenetics has been widely used to control processes inside the cells. The authors decided to bring optogenetics into the extracellular realm, specifically to test whether they could control receptor-matrix interactions using light.

The team of researchers, which also included the groups of Prof. Dr. Gerald Radziwill and Prof. Dr. Wolfgang Schamel, focussed their attention on an important class of receptors – called integrins – that facilitate adhesion to extracellular matrix. “Although integrins have central roles in many normal biological processes, they can also promote growth and spread of cancer and have thus been explored as targets for anti-cancer therapies.” explains first author Julia Baaske. To control integrin-mediated adhesion using light, the scientists first developed an OptoMatrix coated with a light-sensitive plant protein called phytochrome B. Then they engineered an OptoIntegrin equipped with a phytochrome-interacting factor (PIF6) and expressed this receptor in cancer cells. Phytochrome B is usually found in its inactive form, but when exposed to a specific wavelength of red light it is activated and can be bound by PIF6; when exposed to infrared light it switches back to the inactive form. “The most exciting experiment was when we first shone red light on the OptoMatrix: the cells expressing OptoIntegrin immediately adhered to the matrix and activated intracellular signalling processes. Then when we used infrared light, they almost completely detached.” explains Baaske. “Essentially, we have developed light-controlled velcro for human cells”.

The system not only allows integrin-matrix interactions to be turned on and off with high temporal precision; it also allows spatial control. Strong adherence of cells expressing OptoIntegrins only occurs at parts of the Optomatrix that have been activated with light. “This system serves as a blueprint for precise spatiotemporal control of other receptor-ligand interactions using light.” says Weber, who is also a member of the Speaker Team of the recently launched CIBSS Excellence Cluster. “This and other optogenetic and chemical control-of-function technologies that will be developed in CIBSS will give us unprecedented control of and insight into the spatiotemporal dynamics of biological signalling processes.”

###

Original publication:

Baaske J., Mühlhäuser W.W.D., Yousefi O.S., Zanner S., Radziwill G., Hörner M., Schamel W.W.A., Weber W. (2019): Optogenetic control of integrin-matrix interaction. In: Communications Biology. DOI: 10.1038/s42003-018-0264-7

Contact:

Prof. Dr. Wilfried Weber

CIBSS – Centre for Integrative Biological Signalling Studies

Phone: +49 (0)761?/?203 – 97654

E-Mail: [email protected]

Media Contact
Wilfried Weber
[email protected]

Original Source

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/velcro-for-human-cells

Related Journal Article

http://dx.doi.org/10.1038/s42003-018-0264-7

Tags: BiologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Sex-Specific Heart Failure Benefits of Combined B Vitamins

Sex-Specific Heart Failure Benefits of Combined B Vitamins

October 21, 2025
blank

BBX Gene Family’s Role in Chrysanthemum Fungus Defense

October 21, 2025

Shifts in Colorectal Cancer Screening Methods Among Insured Populations

October 21, 2025

Sex-Specific Liver Transcriptomes: Maternal Obesity’s Impact

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1271 shares
    Share 508 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    138 shares
    Share 55 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary CAR T Cells Target HIV-Linked B Cell Cancers

Exosomal miR-122-5p Fights Kidney Fibrosis via HIF-1α

New Study Highlights Health, Economic, and Societal Gains from Vaccination

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.