• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Variety: Spice of life for bumble bees

Bioengineer by Bioengineer
December 21, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research team led by Göttingen University analyses the foraging behavior of bees using pollen DNA

IMAGE

Credit: Svenja Bänsch, University of Göttingen

The yield and quality of many crops benefit from pollination, but it isn’t just honey bees that do this work: bumble bees also have a role. However, placing honey bee or bumble bee colonies next to the field does not guarantee that they will visit the desired plants since there may be other plant species flowering at the same time that prove more attractive. A team from the University of Göttingen, together with researchers from the University of Applied Sciences Mittweida and the Julius Kühn Institute, used innovative molecular biological methods and traditional microscopy to investigate the pollen collecting behaviour of honey bees and bumble bees in agricultural landscapes. They show that bumble bees take much more pollen from dif-ferent plant species than honey bees to satisfy their need for protein. Furthermore, less pollen from the target – in this case strawberry plants – is collected when there are fields of flowering oilseed rape in the surrounding landscape. The results have been published in the journal Molecular Ecology.

The researchers placed honey bee and bumble bee colonies next to strawberry fields in the Göttingen and Kassel region and collected pollen from returning honey bees and bumble bees. The bees collect the pro-tein-rich pollen mainly for feeding their offspring. The pollen DNA was investigated working closely with the Division of Molecular Biology of Livestock and molecular Diagnostics at the University of Göttingen, and the Department of Biochemistry/Molecular Biology of the Mittweida University of Applied Sciences. “DNA analysis tells us which plant species the bees have visited and how diverse their foraging behaviour is. To do this, we sequenced the DNA of the pollen and compared the sequences using a database of regional plant species,” says Dr Svenja Bänsch, post-doctoral researcher in Functional Agrobiodiversity at the Uni-versity of Göttingen.

“Our study shows that honey bees and bumble bees use very different plants to source their pollen in the landscape. In particular, the wide range of bumble bee nutrition, which they find mainly in flower-rich habi-tats, should be taken into account when taking steps to improve nature conservation. Both honey bees and bumble bees, whose colonies can be purchased or rented, are suitable pollinators in strawberry cultivation. However, naturally occurring wild bees should be encouraged as a priority,” concludes Professor Catrin Westphal, Head of Functional Agrobiodiversity at the University of Göttingen.

###

Original publication: Bänsch S., Tscharntke T., Wünschiers R., Netter L., Brenig B., Gabriel, D. & West-phal, C. (2020) Using ITS2 metabarcoding and microscopy to analyse shifts in pollen diets of honey bees and bumble bees along a mass-flowering crop gradient. Molecular Ecology. Doi:10.1111/mec.15675 or: https://onlinelibrary.wiley.com/doi/full/10.1111/mec.15675

Contact:

Dr Svenja Bänsch

University of Göttingen

Functional Agrobiodiversity

Grisebachstraße 6, 37077 Göttingen, Germany

Email: [email protected]

Professor Catrin Westphal

University of Göttingen

Functional Agrobiodiversity

Grisebachstr. 6, 37077 Göttingen, Germany

Tel: 0551 39 22257

Email: [email protected]

http://www.agrobiodiversity.uni-goettingen.de

Media Contact
Melissa Sollich
[email protected]

Original Source

https://www.uni-goettingen.de/en/3240.html?id=6121

Related Journal Article

http://dx.doi.org/10.1111/mec.15675

Tags: Agricultural Production/EconomicsAgricultureBiodiversityBiologyEcology/EnvironmentEntomology
Share12Tweet8Share2ShareShareShare2

Related Posts

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025
blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing Pleiotropy to Improve Variant Discovery Accurately

Per Diem Payments: Effects on Mental Health Care Quality

New Study Reveals Metabolically Active Visceral Fat Drives Aggressiveness in Endometrial Cancer

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.