• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Variants in non-coding DNA contribute to inherited autism risk

Bioengineer by Bioengineer
April 19, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In recent years, researchers have firmly established that gene mutations appearing for the first time, called de novo mutations, contribute to approximately one-third of cases of autism spectrum disorder (ASD). In a new study, an international team led by scientists at University of California San Diego School of Medicine have identified a culprit that may explain some of the remaining risk: rare inherited variants in regions of non-coding DNA.

The findings are published online in the April 20, 2018 issue of Science.

The newly discovered risk factors differ from known genetic causes of autism in two important ways. First, these variants do not alter the genes directly but instead disrupt the neighboring DNA control elements that turn genes on and off, called cis-regulatory elements or CREs. Second, these variants do not occur as new mutations in children with autism, but instead are inherited from their parents.

"For ten years we've known that the genetic causes of autism consist partly of de novo mutations in the protein sequences of genes" said Jonathan Sebat, a professor of psychiatry, cellular and molecular medicine and pediatrics at UC San Diego School of Medicine and chief of the Beyster Center for Genomics of Psychiatric Genomics. "However, gene sequences represent only 2 percent of the genome."

To investigate the other 98 percent of the genome in ASD, Sebat and his colleagues analyzed the complete genomes of 9,274 subjects from 2,600 families. One thousand were sequenced in San Diego at Human Longevity Inc. (HLI) and at Illumina Inc., and DNA sequences were analyzed at the San Diego Supercomputer Center at UC San Diego. These data were then combined with other large studies from the Simons Simplex Collection and the Autism Speaks MSSNG Whole Genome Sequencing Project.

The researchers then analyzed structural variants, deleted or duplicated segments of DNA that disrupt regulatory elements of genes, dubbed CRE-SVs. From the complete genomes of families, the researchers found that CRE-SVs that are inherited from parents also contributed to ASD.

"We also found that CRE-SVs were inherited predominantly from fathers, which was a surprise," said co-first author William M. Brandler, PhD, a postdoctoral scholar in Sebat's lab at UC San Diego and bioinformatics scientist at HLI.

"Previous studies have found evidence that some protein-coding variants are inherited predominantly from mothers, a phenomenon known as a maternal origin effect. The paternal origin effect we see for non-coding variants suggests that the inherited genetic contribution from mothers and fathers may be qualitatively different."

Sebat said current research does not explain with certainty what mechanism determines these parent-of-origin effects, but he has proposed a plausible model.

"There is a wide spectrum of genetic variation in the human population, with coding variants having strong effects and noncoding variants having weaker effects", he said. "If men and women differ in their capacity to tolerate such variants, this could give rise to the parent-of-origin effects that we see."

###

Co-authors include joint co-first authors Danny Antaki and Madhusudan Gujral, Morgan L. Kleiber, Michelle S. Maile, Oanh Hong, Timothy R. Chapman, Shirley Tan, Prateek Tandon, Keith K. Vaux, Karen S. Messer, Caroline M. Nievergelt, Eric Courchesne, Karen Pierce, Alysson R. Muotri and Lilia M. Iakoucheva, UC San Diego; Joe Whitney, Gaganjot Kaur, Zhuozhi Wang and Bhooma Thiruvahindrapuram, The Hospital for Sick Children, Toronto; Timothy Pang, Shih C. Tang and Christina Corsello, UC San Diego and Rady Children's Hospital; Yan Yang, Eoghan Harrington, Sissel Juul and Daniel J. Turner, Oxford Nanopore Technologies, NY and UK; Stephen F. Kingsmore, Rady Children's Hospital; Joseph G. Gleeson, UC San Diego, Rady Children's Hospital and Howard Hughes Medical Institute; Denis Bisson, Boyko Kakaradov and Amalio Telenti, Human Longevity Inc., San Diego; J Craig Venter, Human Longevity Inc. and J Craig Venter Institute; Roser Corominas, Universitat Pompeu Fabra and CIBERER, Spain; Claudio Toma, Universitat de Barcelona, Spain and Neuroscience Research Australia; Bru Cormand, CIBERER, Universitat de Barcelona and Institut de Recerca Sant Joan de Deu, Spain; Isabel Rueda, Hospital Sant Joan de Deu; Silvina Guijarro and Amaia Hervas, Hospital Universitari MĂștua de Terrassa, Spain; Maria J. Arranz, Fundacio Docencia I. Recerca Mutua Terrassa, Spain; and Stephen W. Scherer, The Hospital for Sick Children and University of Toronto.

Funding for this research came, in part, from the National Institutes of Health (grants MH076431, MH113715, R21-MH104766, R01-MH105524, R01-MH109885, GM008666, R01-MH108528), the Simons Foundation Autism Research Initiative; the Beyster Family Foundation, the ASD Enlight Foundation; the National Institute of Mental Health (grants R01MH110558, 1-P50-MH081755); Simons Foundation; MINECO; AGAUR, La Marato de TV3; the European Commission H2020 Programme MiND; Institute Carlos III; Mutua Terrassa; Autism Science Foundation, Canadian Institutes of Health Research; California Institute for Regenerative Medicine and NARSAD.

Disclosures: Jonathan Sebat has declared that a patent has been issued to the Cold Spring Harbor Laboratory (U.S. Patent 8554488) on genetic methods for the diagnosis of autism.

Alysson Muotri is a co-founder and has equity interest in TISMOO, a company dedicated to genetic analysis focusing on therapeutic applications customized for autism spectrum disorder and other neurological disorders with genetic origins. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict of interest policies.

Full study: http://science.sciencemag.org/content/360/6386/327.full

Media Contact

Scott LaFee
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

http://dx.doi.org/10.1126/science.aan2261

Share12Tweet7Share2ShareShareShare1

Related Posts

Prenatal Exposure to Urban Heat Dome Linked to Behavioral Issues in Children

Prenatal Exposure to Urban Heat Dome Linked to Behavioral Issues in Children

August 23, 2025
blank

Harnessing the Power of the Non-Coding Genome to Advance Precision Medicine

August 23, 2025

WTAP Drives DNA Repair via m6A-FOXM1 in Liver Cancer

August 22, 2025

Unraveling SOX2: Its Crucial Role in Prostate Cancer Progression and Therapy Resistance

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Weather’s Impact on Anopheles Mosquito Populations in Lagos

Ghost Spider’s Maternal Care vs. New Fly Species

DWI-Guided vs. MRI-Based IMRT in Head & Neck

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.