• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Valuable insights into the modeling, application, and production of bioactive materials

Bioengineer by Bioengineer
October 18, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Anatomy, Modeling and Biomaterial Fabrication for Dental and Maxillofacial Applications provides readers with information about dental implants and biomaterial fabrication for maxillofacial procedures and dental bone / tissue repair. It will also provide valuable insights into the application and production of bioactive materials for any researchers and students in materials science and biomedical engineering.

Bioceramics prior to the 1970s were utilized as implants to perform singular and biologically inert roles. The limitations with these manufactured materials as tissue substitutes were emphasized with the growing realization that tissues and cells of the human body function other different metabolic and regulatory roles. Acquiring a deeper insight into the manufacturing process in addition to the properties of bioceramics (physical, mechanical, and biological) currently used as implants and as bone replacement materials could significantly contribute to the design of new-generation prostheses and implantable devices as well as post-operative patient management policies. The advantages of utilizing advanced ceramic materials in dental and oral and maxillofacial applications have generally been welcomed, particularly their strength and biocompatibility. Enhancements in the fabrication process can produce ceramic materials with higher densities and smaller grain structures which are essential for their utilizations in dentistry and maxillofacial surgery.

The relationship between biological responses and surface properties of materials is one of the main issues in biomedical materials research. Currently, one of the key drawbacks of synthetic implants is their failure to adapt to the local tissue environment. Surface modification using nanocoatings and nanocomposite coatings has become a vital tool in the research aimed at gaining an insight into how the chemical and surface properties of the materials used will influence its interaction with the biological system. As a deeper understanding is achieved, it is anticipated that surface modifications aimed at controlling tissue response will generate new opportunities for the research and development of new and improved dental and maxillofacial implants and prostheses in a more rapid and systemic manner.

Undoubtedly, the complications most frequently associated with the use of implantable medical devices such as dental implants are bacterial infections. The search is ongoing to find a more effective and less costly means of delivering antibiotics to fight against bacterial infections without the complications associated with long-term intravenous access and the toxicity of systemic antibiotics. For any drug carriers that utilize nanocoatings and nanocomposite coatings, the appropriate rates of dissolution as well as their control within the human body is the primary concern. A number of studies were carried out to investigate ways in which long-term release or long circulating time carriers can be developed. Among these, the surface modification of nanocoatings and nanocomposite coatings with a variety of polymeric macromolecules or nonionic surfactant were found to be the most effective. Nevertheless, appropriate and efficient modifications of the nanoparticles within multifunctional nanocoatings are a necessity for the future for slow drug delivery devices and systems.

New generations of medical implants and devices with these functionalized surfaces will require nanoscale surface properties measuring techniques that can be used to describe both living tissues and inorganic materials as well as the interfacial reactions between implant and bone tissue for future modelling and implant and prosthesis design. The use of theoretical modeling approaches such as finite element analysis (FEA) is becoming a necessity in the fields of medicine and dentistry. By examining the mechanics of a single cell using FEA, we could potentially accelerate discoveries in the fields of regenerative medicine, drug discovery, and mechanobiology.

###

About the Author:

Anatomy, Modeling and Biomaterial Fabrication for Dental and Maxillofacial Applications is written by Andy H. Choi, Ph.D. in the Faculty of Science at the University of Technology Sydney, Australia. He is an early career researcher who received his doctorate on FEA to study the biomechanical behavior of ceramic and metallic dental implants inserted into the human mandible. After completing his doctorate, he expanded his research focus to biomaterials and nanocoatings, in particular, calcium phosphate-based nanomaterials for biomedical applications. In late 2010, he undertook post-doctoral training at the Faculty of Dentistry of the University of Hong Kong concentrating on the application of FEA in dentistry and the development of calcium phosphate nano-bioceramics.

Chapters in the book focus on the applications of mathematical and computerized modeling methodology in dentistry and oral and maxillofacial surgery, at both research and clinical levels. Furthermore, this book also covers the types of bioceramics and surface modifications currently used and their production methods and properties. It is an ideal reference for medical and dental students and professionals (dentists, oral and maxillofacial surgeons, orthopedic surgeons, prosthodontics) who are involved in implantology and tissue engineering.

Media Contact

Faizan-Ul-Haq
[email protected]
@BenthamScienceP

http://benthamscience.com/

Share12Tweet7Share2ShareShareShare1

Related Posts

Barriers and Boosters for Nurses Caring for Seniors

October 10, 2025

Creating a Canadian Midwifery Research Priority Framework

October 10, 2025

Boosting Balance in Seniors: Innovative VR and Stimulation Trial

October 10, 2025

Sensitive Near-Point Detection of Hidden Malaria Infections

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1189 shares
    Share 475 Tweet 297
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ni2+ Enhancement of α-Bi2O3 Boosts Photocatalytic Efficiency

Barriers and Boosters for Nurses Caring for Seniors

Pan-Centromere Evolution in Brassica Plants Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.