• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UW to host $15.6 million NSF-funded center for innovation, education in materials science

Bioengineer by Bioengineer
September 25, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Matt Hagen/UW Clean Energy Institute

The University of Washington is home to a new national center of excellence for research, education and training in materials science. The Molecular Engineering Materials Center is funded by a $15.6 million, six-year grant from the National Science Foundation as part of its highly competitive Materials Research Science and Engineering Center (MRSEC) program. The UW center is a partnership among UW faculty from the College of Arts & Sciences, the College of Engineering, the Clean Energy Institute (CEI) and the Molecular Engineering & Sciences Institute (MolES).

The new center builds on the UW's record of innovative, collaborative and cross-disciplinary research in the materials sciences, and on a legacy of timely institutional and state investments in materials research at the UW. Initial research will focus on nanocrystals and thin films — toward goals such as developing new materials for applications in clean energy, photonics and quantum computing.

"The primary goal of the UW MRSEC is to empower the next generation of science and engineering leaders," said center director and UW chemistry professor Daniel Gamelin. "This will involve engaging and supporting students and postdoctoral researchers — and giving them the research and educational experiences, training and cross-disciplinary mentorship that they will need to forge careers on the cutting edge of materials science."

The center will embark on new research and training endeavors to:

  • Pursue so-called "moonshot" projects, which are research endeavors with potentially high payoff, but are generally beyond the feasibility of smaller research grants awarded to individual professors.
  • Implement new cross-disciplinary training and mentorship programs for doctoral students and postdoctoral researchers, including opportunities to conduct research with the center's industrial and international partners, and with partners at Pacific Northwest National Laboratory and at other National Laboratories run by the U.S. Department of Energy.
  • Broaden educational and research opportunities for UW students and researchers, including advanced training on new equipment purchased with center funds.
  • Expand outreach and mentorship efforts to high school students from underrepresented minorities to encourage them to pursue science, technology, engineering and math (STEM) education as undergraduates.
  • Implement comprehensive outreach efforts to recruit military veterans at the UW and at local community colleges into research and education for STEM careers.
  • Provide support for additional doctoral and postdoctoral researchers.

The center's inaugural team of 15 faculty come from a variety of disciplines across engineering and the physical sciences. In addition to their home departments in the College of Engineering and the College of Arts & Sciences, 10 are also faculty members in the CEI and 11 in the MolES. This diverse cohort reflects the center's goal to foster novel and innovative collaborations across traditionally separate disciplines.

The center will make use of existing research and education space across the UW campus, including in the Molecular Engineering & Sciences Building. The CEI and the MolES, both of which are headquartered in that building, will provide access to equipment for center research and training.

The center's outreach activities — both within the UW and around the region — emphasize education and training for materials science careers. Each year it will host a Research Experiences for Undergraduates program for students from around the country to conduct research with a UW faculty member during the summer. In addition, center scientists will mentor pre-college students from underrepresented minority groups, providing support and resources to help prepare them for college and encourage them to pursue STEM education. In an entirely new endeavor, the center also will set up programs to engage veterans in center research, very few of whom pursue STEM education and careers.

"With this NSF support, the center will bring new opportunities in STEM education to groups that are underrepresented in STEM careers," said UW professor of materials science and engineering Christine Luscombe, who is the center's executive director for education and outreach. "Programs like these are expanding access to science."

The center will focus on two broad research areas, in nanocrystals and thin films.

The first goal, co-led by Gamelin and Luscombe and including eight initial faculty members, is to pursue new approaches to engineer defects in nanocrystals such as semiconductor quantum dots. Though "defects" often have a negative connotation, in materials science they are opportunities to create substances with novel and technologically attractive properties. Precisely targeted defects or impurities, for example, could make a substance cool down — rather than heat up — when hit by a laser. These new materials could also lead to products such as solar-concentrating window films that absorb photons from sunlight and shunt them to photovoltaic cells for energy conversion.

The center's other focus is the creation of new ultrathin semiconductor materials with unique properties. This team will include seven initial faculty, and is co-led by associate professor of physics and materials science and engineering Xiaodong Xu and assistant professor of physics and electrical engineering Kai-Mei Fu. This research creates thin sheets of materials — often just one layer of atoms thick — and investigates the unique quantum-mechanical properties revealed when these sheets are layered together. These layered materials could form the basis of new ultrathin semiconductors for applications in clean energy, optoelectronics and other applications. In fact, using this approach, one UW team recently discovered a 2-D magnetic material.

"We chose nanocrystals and ultrathin semiconductors because they promise to yield basic, fundamental and impactful discoveries in materials science," said Gamelin. "And those advances will fuel new innovations and applications in growing industries — from quantum computing to clean energy."

###

Gamelin, Xu and Fu — along with assistant professor of chemistry Brandi Cossairt and electrical engineering professor Scott Dunham — represented the UW team in Washington, D.C., during the final leg of the multi-stage competition for NSF-MRSEC support. Funding for the UW's Molecular Engineering Materials Center began Sept. 1. The NSF supports 20 MRSECs across the nation, and the UW's is one of only two on the West Coast.

For more information, contact Gamelin at [email protected] or 206-685-0901.

Media Contact

James Urton
[email protected]
206-543-2580
@UW

http://www.washington.edu/news/

Original Source

http://www.washington.edu/news/2017/09/25/uw-to-host-15-6m-nsf-funded-center-for-innovation-education-in-materials-science/

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Superinfection Drives Defective HIV-1 Diversity, Replication

October 3, 2025

Iridoid Cyclase Discovery Completes Asterid Pathway

October 3, 2025

Genome Sequencing Uncovers Population Divergence in Yaks

October 3, 2025

AI Uncovers Antimicrobial Peptides Fighting Superbugs

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MRI Radiomics Predicts Pituitary Tumor Consistency

Multi-Domain O-GlcNAcase Unveils Allosteric Mechanisms

Urbanization Alters Oak Tree Microbiome Composition

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 61 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.