• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UTSW reports highest-resolution model to date of brain receptor behind marijuana’s high

Bioengineer by Bioengineer
November 16, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UT Southwestern Medical Center

DALLAS, Nov. 16, 2016 – Researchers at UT Southwestern Medical Center report the most detailed 3-D structure to date of the brain receptor that binds and responds to the chemical at the root of marijuana's high.

Their high-resolution structure of the human cannabinoid receptor 1 (CB1) and its binding site for the chemical tetrahydrocannabinol (THC) should lead to a better understanding of how marijuana affects the brain. The research also could aid discovery of new treatments for conditions that target the receptor, said Dr. Daniel Rosenbaum, Assistant Professor of Biophysics and Biochemistry at UT Southwestern.

"What is most exciting from a therapeutic standpoint is that the same receptor pocket that binds THC also binds cannabinoid inhibitors that have been studied as possible treatments for conditions such as obesity," said Dr. Rosenbaum, senior author of the study published online today by Nature.

"The structure is an important step toward explaining how cannabinoids initiate signals in the brain that affect the release of neurotransmitters that relay messages between the brain's neurons," Dr. Rosenbaum said. "This 3-D structure provides high-resolution details of the binding pocket in the CB1 receptor, where plant cannabinoids like THC, cannabinoids made in the body, and synthetic cannabinoid inhibitors all work to modulate receptor function and physiology."

He said the CB1 receptor is the target for cannabinoid inhibitor drugs now under study as possible treatments for epilepsy, pain control, obesity, and other conditions.

In a competing study released last month by the journal Cell, a U.S.-Chinese team of researchers reported a 3-D structure of the CB1 receptor at a resolution of 2.8 angstroms. The UT Southwestern study reports a higher resolution of 2.6 angstroms. (One angstrom is equivalent to one hundred-millionth of a centimeter.) The higher the resolution, the finer the details of the relationship between atoms of the protein.

"The resolution is very important. Our structure shows a different and better resolved structure at the important binding pocket that is of interest to scientists involved in drug development," Dr. Rosenbaum said. "Overall, these two structures are complementary, but we believe our structure may provide a better framework for understanding how cannabinoids and inhibitors bind to the receptor."

The Cell study examined the CB1 receptor bound to a synthetic chemical created to stabilize the receptor. In contrast, the UT Southwestern research team successfully imaged the receptor bound to the drug taranabant, which was tested as a possible anti-obesity treatment in clinical trials. Those trials ended due to side effects such as anxiety and depression, Dr. Rosenbaum said.

CB1 and the related CB2, which still lacks a high-resolution structural solution, are both members of the human G protein-coupled receptor family. Members of that receptor family control signaling pathways involving hormones, neurotransmitters, and sensory stimuli such as light and odors.

The team's success depended on overcoming the receptor protein's resistance to crystallization, which is required for the diffraction measurements used in X-ray crystallography. The researchers also conducted computer simulations of how THC might bind to the CB1 receptor, he said.

The next step is to obtain structures of CB1 actually bound to THC, he said.

Dr. Rosenbaum, a Eugene McDermott Scholar in Medical Research at UT Southwestern, was listed as one of the world's most highly cited researchers in 2014, according to data compiled by Thomson Reuters. This is his second study published in Nature in the past six months. His earlier study pertained to the structural biology of an important membrane protein involved in cholesterol metabolism.

###

UT Southwestern co-authors in Biophysics include lead author Dr. Zhenhua Shao and Dr. Jie Yin, postdoctoral researchers; Karen Chapman, research scientist; Magdalena Grzemska, a visiting junior researcher; and Lindsay Clark, graduate student. Dr. Junmei Wang, Associate Professor in the Cecil H. and Ida Green Comprehensive Center for Molecular, Computational, and Systems Biology, and of Biophysics also assisted.

The research was funded by the Welch Foundation and the Packard Foundation. The study also received support from the Advanced Photon Source (APS), a U.S. Department of Energy Office of Science User Facility operated by the Argonne National Laboratory.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. The faculty of almost 2,800 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in about 80 specialties to more than 100,000 hospitalized patients and oversee approximately 2.2 million outpatient visits a year.

Media Contact

Deborah Wormser
[email protected]
214-648-3404
@UTSWNews

http://www.swmed.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Alocasia odora Activated Carbon: A Promising Pb2+ Sensor

Alocasia odora Activated Carbon: A Promising Pb2+ Sensor

August 20, 2025
NLRP3 Inflammasome Roles in PANoptosis, Disease

NLRP3 Inflammasome Roles in PANoptosis, Disease

August 20, 2025

SiO2 Nanoparticles Enhance Conductivity in Polymer Blends

August 20, 2025

Soybean Phytocytokine-Receptor Module Boosts Disease Resistance

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Alocasia odora Activated Carbon: A Promising Pb2+ Sensor

NLRP3 Inflammasome Roles in PANoptosis, Disease

SiO2 Nanoparticles Enhance Conductivity in Polymer Blends

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.