• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UToledo research finds link between refined dietary fiber, gut bacteria and liver cancer

Bioengineer by Bioengineer
October 18, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dan Miller, University of Toledo

Many of the processed foods we find on grocery store shelves have been loaded up with highly refined soluble fibers such as inulin, a popular probiotic that recently received approval from the Food and Drug Administration to be marketed as health-promoting.

But a new study from The University of Toledo's College of Medicine and Life Sciences is raising serious questions about whether the risks of adding refined fiber to processed foods may significantly outweigh the benefits.

Dr. Matam Vijay-Kumar, director of the UT Microbiome Consortium and associate professor in the UT Department of Physiology and Pharmacology, and his research team recently investigated if a diet enriched with refined inulin might help combat obesity-associated complications in mice.

While the inulin-containing diet did stave off obesity in 40 percent of mice, many of those same mice went on to develop liver cancer at the end of the six-month study.

"The findings shook us," Vijay-Kumar said, "but at the same time we recognized their potential importance and accepted the challenge of exploring how processed dietary soluble fiber was inducing liver cancer."

Although this study was performed in mice, it has potential implications for human health. It also suggests, researchers say, that enriching processed foods with refined, fermentable fiber should be approached with great caution.

"We fully appreciate that the fibers present in whole foods like fruits and vegetables are healthy," Vijay-Kumar said. "Because of that, fortifying or adding purified fiber to processed food sounds logical. However, our results suggest it may in fact be dangerous."

The findings were published in the Oct. 18 issue of Cell, one of the world's leading biological journals.

There are two basic types of naturally occurring dietary fiber, soluble and insoluble. Soluble fibers are fermented by gut bacteria into short-chain fatty acids. Insoluble fibers pass through the digestive system unchanged.

While both types are beneficial, the concern raised in the study relates to how gut bacteria break down the highly refined fiber that is added to some processed foods as a dietary supplement.

Dr. Vishal Singh, a Crohn's and Colitis Foundation Fellow at The University of Toledo and lead author of the paper, said refined fiber is a new addition to our diets and that we are in the very early stages of understanding the risks and benefits it may present.

"Soluble fibers added to processed foods are not part of a natural meal," Singh said. "The inulin used in this study is from chicory root, which is not a food we would normally eat. In addition, during the extraction and processing of the fiber, it goes through a chemical process. We don't know how the body responds to these processed fibers."

Chicory root is used as a source of inulin to fortify fiber in processed foods.

The mice that developed liver cancer in this study had altered and elevated gut bacteria, a condition known as dysbiosis. Intriguingly, the researchers observed no evidence of liver cancer in inulin-fed mice that were treated with broad-spectrum antibiotics to deplete gut bacteria.

The UT researchers collaborated with researchers at Georgia State University who performed a similar study in germ-free mice that completely lack gut bacteria. The absence of liver cancer in those mice further confirmed the contributory role of gut bacteria.

The bacteria collectively known as gut microbiota degrade and digest soluble fibers via fermentation. To inhibit that fermentation process, the UT researchers fed mice beta acids derived from Humulus lupulus — a plant more commonly known for producing the hops that go into beer to prevent spoilage from fermentation.

"Strikingly, feeding beta-acids to inulin-fed mice averted liver cancer, which further reinforces our hypothesis that gut bacterial dysmetabolism primarily driving liver cancer in these mice," Singh said.

Researchers also found they could halt the development of liver cancer by intervening to replace inulin with the insoluble fiber cellulose.

"Cellulose could not be fermented by gut bacteria present in mice or humans. This finding again highlights the link between bacterial fermentation of soluble fiber and liver cancer development in these mice," said Beng San Yeoh, a graduate student in Vijay-Kumar's lab and another lead author of the study.

Researchers say their findings suggest the need for more studies that look at human consumption of the type of refined fiber found in processed foods.

"Our study is going against the conventional wisdom of what people think, that fiber is good, no matter how they get it," Vijay-Kumar said. "We do not want to promote that fiber is bad. Rather, we highlight that fortifying processed foods with refined soluble fiber may not be safe or advisable to certain individuals with gut bacterial overgrowth or dysbiosis, whose abnormal fermentation of this fiber could increase the susceptibly to liver cancer."

###

The study was supported by the National Cancer Institute of the National Institute of Health.

Media Contact

Tyrel Linkhorn
[email protected]
419-383-5376

http://www.utoledo.edu

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2018.09.004

Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Microtia Treatment: Advances in Tissue Engineering

September 23, 2025

Nuria Assa-Munt Honored with 2026 Rosalba Kampman Distinguished Service Award

September 23, 2025

Jie Xiao Honored with 2026 Carolyn Cohen Innovation Award

September 23, 2025

Wonhwa Cho Honored with Biophysical Society’s 2026 Award for Contributions to Biophysics in Health and Disease

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Microtia Treatment: Advances in Tissue Engineering

Cornelis (Cees) Dekker Honored with 2026 Kazuhiko Kinosita Award in Single-Molecule Biophysics

Nuria Assa-Munt Honored with 2026 Rosalba Kampman Distinguished Service Award

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.