• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

UTMB researchers find how Ebola disables the immune system

Bioengineer by Bioengineer
December 6, 2016
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The University of Texas Medical Branch at Galveston

GALVESTON, Texas – A new study at The University of Texas Medical Branch in Galveston sheds light on how Ebola so effectively disables the human immune system.

Virologist Alex Bukreyev, UTMB professor and senior author of the study, said the research team engineered versions of the Ebola virus in order to study how the components responsible for thwarting or disabling our immune defenses wreak their havoc. The findings are described in the new edition of PLOS Pathogens.

For the past 16 years, there has been an extensive investigation of how the Ebola virus operates when it invades a new host such as a human and how it interferes with interferons — specialized signaling proteins that are made and released in response to an invasion by a virus or other pathogen. Interferons directly inhibit replication of viral particles in cells. A focus of this research has been how Ebola gets around the host's cell-mediated immune response, which is another defense mechanism involving some specialized immune cells that either kill virus-infected cells or secrete antibodies that directly neutralize the virus.

Previous studies have identified two protein regions within the Ebola virus' structure called interferon inhibiting domains, or IIDs, that prevent the host's interferons from doing their job thus disabling the host's immune system defenses. As a result, these IIDs promote replication of the virus within the host. However, researchers have assumed that IIDs only inhibit the effects of interferons — until now.

The study used genetically altered strains of the Ebola virus that were designed with one or both of the IID's disabled to study what they do to the host. The altered viruses were placed on specific types of immune cells isolated from human blood, called dendritic cells, T lymphocytes, B lymphocytes and natural killer cells, as these types of cells are key players in marshaling defenses.

"We found that IIDs work not only in ways previously established, which includes interference in cascades of protective biochemical reactions that occur in cells in response to Ebola that limit infection", Bukreyev said. "The IID's also counter the activity of immune cells, including T lymphocytes and natural killer cells that kill virus-infected cells as well as B lymphocytes that secrete antibodies." "It's a double edged sword — the IIDs not only block interferon signaling, they also prevent infected cells from activating the cell-mediated arm of the immune response," said Patrick Younan, research scientist and co-lead author of the paper. "You take away these functions of Ebola virus and the immune system should clear the infection."

Bukreyev said, "taken together, the findings suggest that Ebola IIDs have a global dampening effect on the host's ability to fight off the impending Ebola infection, and also indicate the potential benefits of blocking the immunosuppressive effects of IIDs as a potential therapy for Ebola infection."

###

Other authors include UTMB's Ndongala Michel Lubaki, Rodrigo Santos, Michelle Meyer and Mathieu Iampietro as well as Richard Koup from the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, who served as a consultant.

Media Contact

Donna Ramirez
[email protected]
409-772-8791
@utmb_news

http://www.utmb.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Ion Exchange Membranes for Arsenic Removal

PATZ1: Key Player in Tumorigenesis and Metabolism

Barriers to Video Visits for Non-English Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.