• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UTHealth Houston researchers awarded $2.6 million NIH grant to study molecular pathways and potential strategies for treatment of myocardial ischemia and reperfusion injury

Bioengineer by Bioengineer
November 9, 2023
in Health
Reading Time: 5 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A four-year, $2.6 million grant to study circadian rhythm and novel therapies to protect the heart during a heart attack or cardiac surgery has been awarded to UTHealth Houston by the National Heart, Lung, and Blood Institute, part of the National Institutes of Health.

Holger Eltzschig and Wei Ruan

Credit: (Photo by Nathan Jeter/UTHealth Houston)

A four-year, $2.6 million grant to study circadian rhythm and novel therapies to protect the heart during a heart attack or cardiac surgery has been awarded to UTHealth Houston by the National Heart, Lung, and Blood Institute, part of the National Institutes of Health.

Principal investigator Holger Eltzschig, MD, PhD, professor, and co-investigator Wei Ruan, MD, PhD, assistant professor, from the Department of Anesthesiology, Critical Care and Pain Medicine at McGovern Medical School at UTHealth Houston, are studying translational, pharmacologic, and interventional strategies targeting circadian rhythm and hypoxia signaling that could help patients who are experiencing a heart attack or undergoing open-heart surgery.

Previously published research in 2012 and 2021 by Eltzschig and Ruan showed that biological rhythms affect myocardial ischemia and reperfusion injury (IRI) severity. IRI can occur in the setting of a heart attack, open-heart surgery, or during circulatory arrest, where blood flow is temporarily cut off (ischemia). During this period, the affected heart tissues suffer from inadequate oxygen supply (hypoxia). Once the obstruction is removed and blood flow resumes (reperfusion), rather than bringing immediate relief, this sudden influx of blood can lead to additional stress and damage to the heart.  

The previous research further indicated that larger infarctions or higher incidences of heart failure happen in patients with morning onset heart attacks rather than later in the day. This daytime variation of myocardial injury hints at a potential interaction between circadian rhythm and hypoxia signaling.

“My laboratory has been very interested in studying IRI for over two decades,” said Eltzschig, the John P. and Kathrine G. McGovern Distinguished University Chair and the director of the Center for Perioperative Medicine at McGovern Medical School. “We undertook an unbiased look to understand the molecular mechanisms of why there are differences in heart attacks in the early morning versus the late afternoon.”

In studies that led up to the current grant application, the team of scientists analyzed heart tissue samples from circadian rhythm-trained mice following heart attacks at different time points of the day. In addition, they analyzed samples derived from the left heart ventricle of patients undergoing cardiac surgery at different times of the day. They identified a highly differentially expressed gene, BMAL1, a core circadian transcription factor. The genetic deletion of BMAL1 in mouse hearts eliminates daytime variations in cardiac injury.

Natural protective molecules called hypoxia-inducible factors (HIFs) are activated due to a lack of oxygen and promote the adaptation to limited oxygen availability. In addition, HIFs limit excessive tissue inflammation in order to prevent further tissue damage. Specifically, researchers uncovered that HIF2A works together with BMAL1 in heart tissues to provide circadian-dependent heart protection.

With this grant, researchers will aim to understand how BMAL1 and HIF2A interact and their functional roles in modulating daytime variation of cardiac injury. High-resolution imaging techniques will be employed to study the molecular interactions between BMAL1 and HIF2A by Kuang-Lei Tsai, PhD, co-principal investigator and assistant professor, and postdoctoral researcher Tao Li, PhD, from the Department of Biochemistry and Molecular Biology at McGovern Medical School. They will further explore the possibility of targeting the BMAL1 and HIF2A pathways as therapeutic strategies to protect the heart from injuries during surgery.

“We are using data to see if the pathways and transcriptional regulations are occurring in patients undergoing cardiac surgery in the morning or the afternoon,” Eltzschig said.

The other co-principal investigator of the study is Jochen Daniel Muehlschlegel, MD, MMSc, MBA, professor and chair of the Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University. NIH Grant R01HL165748 funds this research.

Media Inquiries: 713-500-3030

A four-year, $2.6 million grant to study circadian rhythm and novel therapies to protect the heart during a heart attack or cardiac surgery has been awarded to UTHealth Houston by the National Heart, Lung, and Blood Institute, part of the National Institutes of Health.

Principal investigator Holger Eltzschig, MD, PhD, professor, and co-investigator Wei Ruan, MD, PhD, assistant professor, from the Department of Anesthesiology, Critical Care and Pain Medicine at McGovern Medical School at UTHealth Houston, are studying translational, pharmacologic, and interventional strategies targeting circadian rhythm and hypoxia signaling that could help patients who are experiencing a heart attack or undergoing open-heart surgery.

Previously published research in 2012 and 2021 by Eltzschig and Ruan showed that biological rhythms affect myocardial ischemia and reperfusion injury (IRI) severity. IRI can occur in the setting of a heart attack, open-heart surgery, or during circulatory arrest, where blood flow is temporarily cut off (ischemia). During this period, the affected heart tissues suffer from inadequate oxygen supply (hypoxia). Once the obstruction is removed and blood flow resumes (reperfusion), rather than bringing immediate relief, this sudden influx of blood can lead to additional stress and damage to the heart.  

The previous research further indicated that larger infarctions or higher incidences of heart failure happen in patients with morning onset heart attacks rather than later in the day. This daytime variation of myocardial injury hints at a potential interaction between circadian rhythm and hypoxia signaling.

“My laboratory has been very interested in studying IRI for over two decades,” said Eltzschig, the John P. and Kathrine G. McGovern Distinguished University Chair and the director of the Center for Perioperative Medicine at McGovern Medical School. “We undertook an unbiased look to understand the molecular mechanisms of why there are differences in heart attacks in the early morning versus the late afternoon.”

In studies that led up to the current grant application, the team of scientists analyzed heart tissue samples from circadian rhythm-trained mice following heart attacks at different time points of the day. In addition, they analyzed samples derived from the left heart ventricle of patients undergoing cardiac surgery at different times of the day. They identified a highly differentially expressed gene, BMAL1, a core circadian transcription factor. The genetic deletion of BMAL1 in mouse hearts eliminates daytime variations in cardiac injury.

Natural protective molecules called hypoxia-inducible factors (HIFs) are activated due to a lack of oxygen and promote the adaptation to limited oxygen availability. In addition, HIFs limit excessive tissue inflammation in order to prevent further tissue damage. Specifically, researchers uncovered that HIF2A works together with BMAL1 in heart tissues to provide circadian-dependent heart protection.

With this grant, researchers will aim to understand how BMAL1 and HIF2A interact and their functional roles in modulating daytime variation of cardiac injury. High-resolution imaging techniques will be employed to study the molecular interactions between BMAL1 and HIF2A by Kuang-Lei Tsai, PhD, co-principal investigator and assistant professor, and postdoctoral researcher Tao Li, PhD, from the Department of Biochemistry and Molecular Biology at McGovern Medical School. They will further explore the possibility of targeting the BMAL1 and HIF2A pathways as therapeutic strategies to protect the heart from injuries during surgery.

“We are using data to see if the pathways and transcriptional regulations are occurring in patients undergoing cardiac surgery in the morning or the afternoon,” Eltzschig said.

The other co-principal investigator of the study is Jochen Daniel Muehlschlegel, MD, MMSc, MBA, professor and chair of the Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University. NIH Grant R01HL165748 funds this research.

Media Inquiries: 713-500-3030



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025
blank

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

July 28, 2025

Bariatric Surgery’s Impact on Circulating S100A9

July 28, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    55 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

Advancing Microbial Risk Assessment Through Detection Technology Evolution

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.