• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UTA research professor identifies brain cells linked to pediatric seizures

Bioengineer by Bioengineer
February 17, 2023
in Health
Reading Time: 3 mins read
0
Christos Papadelis
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A University of Texas at Arlington bioengineer and his doctoral student have discovered how to identify which brain cells lead to epileptic episodes in children.

Christos Papadelis

Credit: UT Arlington

A University of Texas at Arlington bioengineer and his doctoral student have discovered how to identify which brain cells lead to epileptic episodes in children.

Professor of Research Christos Papadelis and doctoral student Ludovica Corona, who is first author, have written a paper published in Brain, a highly touted scientific journal. The study, “Non-invasive mapping of epileptogenic networks predicts surgical outcome,” is supported by UT Arlington and Cook Children’s Health Care System and funded by the National Institute of Neurological Disorders and Stroke and was produced in collaboration with Boston Children’s Hospital, Massachusetts General Hospital and Harvard Medical School.

Papadelis and his team used noninvasive techniques and advanced computational methods to measure the electric and magnetic signals generated by neural cells in the human brain and identify functional networks that are responsible for the generation of seizures in children suffering from epilepsy. This new method identifies those functional networks with high precision.

“This could benefit so many children who can’t control epilepsy with drugs, which represents between 20 and 30% of children suffering from epilepsy,” said Papadelis, who also serves as the director of research in the Jane and John Justin Neurosciences Center at Cook Children’s Health Care System.

Currently, Papadelis said, epilepsy surgery is the safest and most effective treatment for these patients since it offers a 50% chance of eliminating seizures.

“By identifying which parts of the brain are producing the seizures, we can then resect them with brain surgery or ablate them with laser,” Papadelis said. “The test we developed pinpoints exactly where the epilepsy network is occurring. Currently, there is no clinical exam to identify this brain area with high precision.

“Seizures affect these children throughout their entire live and have significant impact in their normal development. Successful treatment of epilepsy through surgery or laser ablation early in life would provide an improved outcome for these children since their brains possess extensive neural plasticity and can recover after surgery better than adult brains. This would help the children live seizure-free and have less comorbidities from epilepsy.”

Epilepsy is a common neurological disorder affecting about 3.4 million people in the United States. Of those, about 470,000 are children, or about one of every 100 children in the U.S. Children with uncontrolled seizures are at increased risk for poor long-term intellectual and psychological outcomes, along with poor health-related quality of life.

Michael Cho, chair of the UTA Department of Bioengineering, said this research is a characteristic example of how bioengineering research can have a direct impact on the lives of patients.

“This research has real promise,” Cho said. “In many areas, the quicker and more accurately the problems are detected and solved, the better chance patients have of living normal lives. The diagnostic tool is great in that it is non-invasive as well.”

 



Journal

Brain

Method of Research

Imaging analysis

Subject of Research

Cells

Article Title

Non-invasive mapping of epileptogenic networks predicts surgical outcome

Article Publication Date

15-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Bipolar Configurations in Adult Spine Deformity Analysis

October 2, 2025

CNIO Researchers Develop the “Human Repairome”: A Comprehensive Catalogue of DNA “Scars” Paving the Way for Personalized Cancer Therapies

October 2, 2025

NJIT Study Reveals Vision Therapy Restores Clarity from Concussion-Induced Double and Blurred Vision

October 2, 2025

Mental Health Advances Most Strongly Predict Increased Life Satisfaction

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    80 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bipolar Configurations in Adult Spine Deformity Analysis

Short-Course Radiation Therapy Following Prostate Surgery Reduces Cancer Recurrence Risk

CNIO Researchers Develop the “Human Repairome”: A Comprehensive Catalogue of DNA “Scars” Paving the Way for Personalized Cancer Therapies

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.